Kernelized Principal Component Analysis详解

本文详细解析了主成分分析(PCA)的局限性,并介绍了如何通过引入核化来解决这一问题,即核主成分分析(KPCA)。KPCA通过非线性映射在高维空间中进行PCA,以更好地保留数据的结构。文章深入探讨了KPCA的推导过程,包括核函数的使用和计算复杂度的分析。
摘要由CSDN通过智能技术生成

Kernelized Principal Component Analysis详解

第三十八次写博客,本人数学基础不是太好,如果有幸能得到读者指正,感激不尽,希望能借此机会向大家学习。《主成分分析(PCA)详解(附带详细公式推导)》一文中曾对一种重要的降维手段——主成分分析(PCA)进行了讲解,这篇文章则主要对PCA的一种变体——核主成分分析(KPCA)进行讲解。

主成分分析的问题分析

  主成分分析(PCA)中采用的降维方法是线性降维,然而在很多现实任务中,可能需要非线性映射才能找到恰当的低维嵌入(Low-dimension Embedding),如下图所示,图1(a)中的3000个样本点是从图1(b)所示的二维矩形区域采样后并以S形曲面嵌入到三维空间中的,为了对这个二维矩形区域和经过降维后得到的低维嵌入进行对比,在这里将此区域称为“本真”(Intrinsic)二维空间,可以看出经过PCA降维后得到的低维嵌入丢失了原始数据的低维结构。主成分分析(PCA)中采用的降维方法是线性降维,然而在很多现实任务中,可能需要非线性映射才能找到恰当的低维嵌入(Low-dimension Embedding),如下图所示,图1(a)中的3000个样本点是从图1(b)所示的二维矩形区域采样后并以S形曲面嵌入到三维空间中的,为了对这个二维矩形区域和经过降维后得到的低维嵌入进行对比,在这里将此区域称为“本真”(Intrinsic)二维空间,可以看出经过PCA降维后得到的低维嵌入丢失了原始数据的低维结构。

图1 线性降维的不足

  基于上述问题,我们考虑向线性降维中引入“核化”(kernelized),下面对核化版本的主成分分析,即核主成分分析(Kernelized Principal Component Analysis,简称KPCA)进行分析。

核主成分分析的推导

  假设,原始样本空间 X ∈ R d × m \mathbf{X}\in\mathbb{R}^{d\times{m}} XRd×m,核化后的样本空间 Z ∈ R d ′ × m \mathbf{Z}\in\mathbb{R}^{d'\times{m}} ZRd×m,降维后得到的样本空间 Y ∈ R d ′ ′ × m \mathbf{Y}\in\mathbb{R}^{d''\times{m}} YRd×m,那么由PCA我们可知存在如下等式,

(1) ( ∑ i = 1 m z i z i T ) w j = λ j w j \left(\sum_{i=1}^{m}{\mathbf{z}_{i}\mathbf{z}_{i}^{T}}\right)\mathbf{w}_{j}=\lambda_{j}\mathbf{w}_{j} \tag{1} (i=1mziziT)wj=λjwj(1)

其中, z i \mathbf{z}_i zi是原样本空间中第 i i i个样本点 x i \mathbf{x}_i xi在核化后的高维空间中的对应点, w j \mathbf{w}_j wj是要求得的投影矩阵 W ∈ R d ′ × d ′ ′ \mathbf{W}\in{\mathbb{R}^{d'\times{d''}}} WRd×d的第 j j j个向量, λ j \lambda_j λj

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值