多标记学习常用评价指标

Subset accuracy

Subset accuracy.png

hamming loss

  • 该指标用于考察样本在单个标记上的误分类情况,即隶属于该样本的概念标记未出现在标记集合中而不隶属于该样本的概念标记出现在标记集合中。

    其中$h(x_i)$输出一个示例的二元标记向量,
    $\Delta$表示两个二元0/1向量的求异操作

one-error

  • 该指标用于考察在样本的概念标记排序序列中,序列最前端的标记不属于相关标记集合的情况。 该指标取值越小越好。

coverage

  • 该指标用于考察在样本的类别标记排序序列中,覆盖隶属于样本的所有类别标记所需要的搜索深度情况。

ranking loss

  • 该指标用于考察在样本的类别标记排序序列中出现排序错误的情况。即无关标记在排序序列中位于相关标记之前。

average precision

  • 该指标用于考察在样本的概念标记排序序列中,排在隶属于该样本的概念标记之前的标记仍属于样本标记集合的情况。

总结

  • 对于前四种评价指标(hamming loss、one-error、coverage、ranking loss)而言,指标越小则算法性能越优;
  • 对于最后一种评价指标(average precision)而言,指标取值越大则算法性能越优

摘自:多标签数据挖 掘技术 : 研究综述

多标签度量方法1.png

多标签度量方法2.png

多标签度量方法3.png

多标签度量方法4.png

多标签度量方法5.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值