ubuntu用户自行安装cuda在自己的目录

在服务器上使用gpu运行程序时,经常会碰到服务器安装cuda版本和自己所需要的不一致的情况,所以可以在自己的目录下安装cuda。
在nvidia官网下载cuda-9.2的安装软件,执行./cuda_9.2.148_396.37_linux.run
在这里插入图片描述
./cuda_9.2.148_396.37_linux.run –help
在这里插入图片描述
./cuda_9.2.148_396.37_linux.run --tmpdir=/data2/gdc/softwares/tmp
发现即使声明了/tmp的位置依然报错,发现是下载的runfile文件有问题,重新进行了下载,不再出现问题。
Runfile文件包括三个文件,可以先将三个文件进行提取,我们只需要用到cuda_9.2.148_396.37_linux.run,其他两个文件一个是NVIDIA DRIVER的安装文件一个是CUDA EXAMPLE的文件,我们并不需要,因为系统已有驱动。
$ chmod +x cuda_9.2.148_396.37_linux.run
$ ./cuda_9.2.148_396.37_linux.run --extract=/data2/gdc/softwares/cuda
在这里插入图片描述
执行安装命令后首先出现的是协议,一只跳过即可最后选accept,安装路径自己定义在某一个目录,出现的其他选项全部选no即可。

在这里插入图片描述
为了使安装的cuda可用,我们需要在~/.bashrc文件中进行一些路径的声明,可参考下图:
在这里插入图片描述
最后打开一个新终端,查看版本可发现已安装成功。
在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,在 Ubuntu 20.04 中安装 CUDA 和 cndnn 库的方法如下: 1. 首先,你需要安装 NVIDIA 驱动。首先,在终端中输入 `sudo add-apt-repository ppa:graphics-drivers/ppa`,然后输入你的密码。之后,输入 `sudo apt update` 并安装最新的 NVIDIA 驱动,如:`sudo apt install nvidia-driver-450`。 2. 接下来,你需要安装 CUDA 和 cuDNN。你可以从 NVIDIA 的官方网站上下载安装包,或者从命令行中使用 `wget` 命令来下载。 3. 安装 CUDA 的方法如下: - 将下载好的安装包复制到本地目录,例如 `~/downloads`,然后进入该目录。 - 解压安装包:`tar -xvf cuda-repo-ubuntu1804-10-2-local-10.2.89-440.33.01_1.0-1_amd64.deb` - 安装:`sudo dpkg -i cuda-repo-ubuntu1804-10-2-local-10.2.89-440.33.01_1.0-1_amd64.deb` - 更新软件包列表:`sudo apt update` - 安装 CUDA 和工具包:`sudo apt install cuda` 4. 安装 cuDNN 的方法如下: - 将下载好的 cuDNN 压缩包复制到本地目录,例如 `~/downloads`,然后进入该目录。 - 解压 cuDNN 压缩包:`tar -xzvf cudnn-10.2-linux-x64-v7.6.5.32.tgz` - 将 cuDNN 的库文件复制到 CUDA安装目录: `sudo cp cuda/include/cudnn.h /usr/local/cuda/include` `sudo cp cuda/lib64/libcudnn ### 回答2: 在Ubuntu 20.04中安装CUDA和cudnn库是为了支持在GPU上进行深度学习和计算密集型任务。下面是在Ubuntu 20.04中安装CUDA和cudnn库的步骤: 1. 检查NVIDIA显卡的兼容性:在终端中输入以下命令,查看NVIDIA显卡是否支持CUDA: ```shell lspci | grep -i nvidia ``` 2. 安装NVIDIA驱动程序:在终端中输入以下命令,安装适合您显卡的NVIDIA驱动程序: ```shell sudo apt-get update sudo apt-get install nvidia-driver-<驱动版本号> ``` 3. 安装CUDA工具包:在终端中输入以下命令,安装CUDA工具包: ```shell sudo apt-get install cuda ``` 4. 配置CUDA环境变量:在终端中打开`.bashrc`文件,并在末尾添加以下内容: ```shell export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 保存文件并执行`source ~/.bashrc`以使更改生效。 5. 下载并安装cuDNN:在NVIDIA官方网站上下载与您的CUDA版本相对应的cuDNN库。将下载的文件解压缩,然后将文件夹复制到`/usr/local/cuda`目录下: ```shell sudo cp -r <cuDNN文件夹路径> /usr/local/cuda ``` 6. 给cuDNN设置权限:进入`/usr/local/cuda/<cuDNN文件夹路径>`目录,然后执行以下命令: ```shell sudo chmod a+r libcudnn.so.<cuDNN版本号> sudo ldconfig ``` 至此,CUDA和cuDNN库已经成功安装Ubuntu 20.04中。您可以启动深度学习框架,如TensorFlow或PyTorch,并配置以使用GPU进行计算。 ### 回答3: 在Ubuntu 20.04上安装CUDA和cuDNN库需要以下步骤: 1. 下载并安装NVIDIA驱动程序。可以在NVIDIA官方网站上找到适用于您的显卡型号的驱动程序。下载完成后,运行以下命令进行安装: ``` sudo chmod +x <驱动程序.run文件> sudo sh <驱动程序.run文件> ``` 2. 安装CUDA。可以从NVIDIA官方网站上下载适用于Ubuntu 20.04的CUDA安装程序。下载后,打开终端,进入下载目录并运行以下命令: ``` sudo dpkg -i cuda-<版本号>.deb sudo apt-key add /var/cuda-repo-<版本号>/7fa2af80.pub sudo apt-get update sudo apt-get install cuda ``` 3. 配置CUDA环境变量。打开终端,运行以下命令编辑`~/.bashrc`文件: ``` nano ~/.bashrc ``` 在文件末尾添加以下内容: ``` export PATH="/usr/local/cuda-<版本号>/bin:$PATH" export LD_LIBRARY_PATH="/usr/local/cuda-<版本号>/lib64:$LD_LIBRARY_PATH" ``` 保存文件并退出编辑器。然后运行以下命令以应用更改: ``` source ~/.bashrc ``` 4. 安装cuDNN库。首先从NVIDIA官方网站上下载适用于CUDA版本的cuDNN库。根据下载的文件类型,运行以下命令解压缩文件: ``` tar -xzvf <cuDNN文件名>.tar.gz ``` 然后将解压得到的文件复制到CUDA安装目录: ``` sudo cp cuda/include/*.h /usr/local/cuda-<版本号>/include/ sudo cp cuda/lib64/*.so* /usr/local/cuda-<版本号>/lib64/ ``` 5. 配置cuDNN库。打开终端,运行以下命令编辑CUDA配置文件: ``` sudo nano /etc/ld.so.conf.d/cuda.conf ``` 添加以下内容: ``` /usr/local/cuda-<版本号>/lib64 ``` 保存文件并退出编辑器。然后运行以下命令以应用更改: ``` sudo ldconfig ``` 现在您已成功在Ubuntu 20.04上安装CUDA和cuDNN库。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值