目 录
摘 要 I
ABSTRACT II
1绪论 7
1.1选题依据及意义 7
1.2国内外研究现状 9
1.2.1电力需求响应研究现状 9
1.2.2 电动汽车参与电力辅助服务研究现状 11
1.3 研究内容与技术路线 13
1.3.1 研究内容 13
1.3.2 技术路线 14
2电力需求响应与电力辅助服务理论基础相关基础理论概述 15
2.1 电力需求响应 15
2.1.1 电力需求响应理论 15
2.1.2 电力需求预测理论 18
2.2 需求响应 20
2.2.1 需求响应概念 20
2.2.2 需求响应分类 21
2.2.3 分时电价 21
2.3 成本效益分析法 22
3 电动汽车电力需求响应潜力分析 23
3.1需求分析分析 23
3.1.1电动汽车充电量需求 23
3.1…2电动汽车充电负荷特性 24
3.1.3 需求响应的潜力 25
3.2 电动汽车参与需求响应潜力分析 26
4电动汽车充放电电价模型 29
4.1 定价分析的原则 29
4.2 模型假设及条件 29
4.3 电动汽车用户对电价响应 30
4.3.1 分时电价 30
4.3.2 电动汽车对电价响应 31
4.4 电动汽车充放电行为建模 31
4.4.1 电动汽车充放电的功率 32
4.4.2 电动汽车充放电时间 32
4.4.3 电动汽车充放电费用 33
4.5 目标函数及约束条件 34
4.5.1 目标函数 34
4.5.2 约束条件 34
4.6 结果分析 35
5 电动汽车有序充放电建议 37
5.1 电动汽车有关政策 37
5.2 电动汽车有序充放电的建议 39
参考文献 42
致谢 45
1绪论
1.1选题依据及意义
大量温室气体排放造成的气候变化问题已是人类共同面临的挑战。在第75届联合国大会的一般性辩论中,中国已经明确提出实现碳中和的时间点,即二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。这是中国对国际社会的承诺,也是对国内的动员令。目前来看,要实现碳中和的愿景,在高比例新能源接入电网后,除了在电力系统安全稳定运行、综合能源耦合互补等系统性技术上要有所突破,在市场机制、优化控制、政策保障等方面也要有所创新[2。党的十九大报告中也明确提出要全面推进能源生产和能源革命,构建清洁低碳、安全高效的能源体系,电力需求侧管理正是贯彻能源消费革命、践行节能减排国策的有效手段。随着供给侧结构性改革和电力体制改革的逐步深入,加强电力需求侧管理已成为完善电力供需平衡机制、优化能源消费结构、促进可再生能源消纳和提升智能用电水平的重要支撑。
依据国际能源署( International Energy Agency,IEA)最新发布的《2023全球电动汽车展望》报告预测,全球电动汽车销量已超过1000万辆,其中中国约占60%,继续保持全球最大市场的地位。从图1.1中可以看出,电动汽车在全球新车销售中的份额从2021年的大约9%增加到2022年的14%,表明电动汽车市场正经历着指数级的增长。特别是在中国,超过一半的电动汽车目前位于我国,已经超过了其2025年新能源汽车销售的目标。电动汽车产业的快速发展将对环境保护和节能减排等均具有重大意义。但是随着需求侧大规模电动汽车接入电网,由于其随机性的移动负荷特性,可能导致配网线路过载、线损增加、电压降低等电能质量问题,对系统的安全稳定运行造成很大负面影响。但是电动汽车负荷又具备灵活可调的特点,如果能通过制定合理的充分放电价格,调节电动汽车的充放电控制策略,经聚合后又能够实现削峰填谷以及促进新能源消纳的目的。同时还可以用电动汽车的快速响应性,当电网出现高峰负荷、紧急事故等情况下为电网提供调峰调频辅助服务、备用容量服务等,可有效的减少电网改造成本和限电的损失,对电网安全、稳定、可靠、经济运行又具有重要意义。
近年来,随着电力体制改革的不断深化,可再生能源替代行动的逐步推进,我国的清洁能源发展迅速,光伏、风电等新能源的装机规模迅猛增长。总体来看,在未来构建以新能源为主体的新型电力系统中,风电和光伏将是未来电力系统的主力电源,传统的火力发电或将以保障和备用的方式存在。但以风光为代表的清洁能源发电在时间维度上具有明显的随机和波动特点,再加上地域上又存在资源分布不均衡等问题,对多资源互补、用户侧需求响应以及电网的协调运行提出了更高挑战。
图1.1 2016-2024年全球电动汽车保有量
在我国,近年来以“电动化”为主的新能源汽车已经成为了汽车行业未来发展的重要趋势。在2020年11月2日,国务院办公厅印发了《新能源汽车产业发展规划(2021-2035年)》,这是未来15年中国新能源汽车发展的纲领性文件。根据该文件的发展愿景,到2025年我国新能源汽车新车销售量达到汽车新车销售总量的20%左右,纯电动乘用车新车平均电耗降至12kWh/100km,自动驾驶汽车实现限定区域和特定场景商业化应用,充换电服务便利性显著提高。到2035年,纯电动汽车成为新销售车辆的主流,公共领域用车全面电动化,燃料电池汽车实现商业化应用,自动驾驶汽车实现规模化应用,有效促进节能减排水平和社会运行效率的提升I8I。当前,汽车行业正在积极拥抱新一轮科技革命,坚持创新驱动,电动化、网联化、智能化如火如荼,未来在规划目标的进一步牵引指导下,将加快融入新发展格局,全面进入高质量发展新阶段。
在政策和市场需求的推动下,我国近年来的新能源汽车保有量迅速攀升,2016-2024年我国的新能源汽车保有量呈直线增长趋势。据公安部统计,2023年全国机动车保有量达4.35亿辆,其中汽车3.36亿辆;机动车驾驶人达5.23亿人,其中汽车驾驶人4.86亿人。截至2023年底,全国新能源汽车保有量达2041万辆,占汽车总量的6.07%。
随着电动汽车产业的快速发展以及新能源发电装机规模的持续增长,电动汽车与电网的协调互动、有序发展也必然要被给予高度的关注。从研究背景可以看出,电动汽车作为高度灵活的移动充电负荷与储能单元,在调节电网负荷、消纳可再生能源、改善电能质量等方面应用潜力巨大。中国又是全球最大的电动汽车推广市场,电动汽车参与区域电网需求响应,实现电动汽车与电网协调互动发展具有得天独厚的优势条件。近年来,虽然已经有部分开展电力需求响应的试点已经将电动汽车纳入到了需求响应资源,但目前电动汽车参与需求响应的各类应用场景还非常有限,在需求响应潜力预测与评估、电动汽车有序充电的优化控制、换电模式下参与区域电网需求响应优化管理以及电动汽车参与辅助服务管理方面还不够完善。因此,本文对电动汽车参与区域电网需求响应的研究将可以有效推动电动汽车与电网协调互动,对我国交通和能源的变革以及环境保护和节能减排等具有重要意义,其主要体现在以下几个方面:
(1)有助于电网削峰填谷,促进电力系统安全稳定运行。在大规模电动汽车接入电网的背景下,通过对电动汽车参与区域电网需求响应的管理研究,使电动汽车与电网能够进行良好的协调互动运行,为电网提供削峰填谷、调峰等辅助服务,对电网负荷进行更加精准的需求响应,可以有效地缓解因大规模电动汽车发展而带来的用电压力和功率波动问题,较好的起到平滑区域电网负荷曲线,对电力系统的安全稳定、经济运行具有重要的现实意义。
(2)有助于促进节能减排,减少二氧化碳的排放。随着新能源发电装机规模的持续快速增长,通过对电动汽车充电负荷的合理优化控制,实现以清洁能源的电作为电动汽车的驱动能量,真正的做到减少传统燃油汽车所带来的尾气排放而不是排放的转移。从行业细分来看,中国约15%左右的碳排放源于交通出行。因此,当电动汽车替代传统燃油汽车的快速发展能够有效的降低交通领域的石油资源消耗,提高能源的使用效率,以更好的实现交通领域的减排目标,对于我国“双碳”目标的早日实现也具有非常积极的意义
1.2国内外研究现状
1.2.1电力需求响应研究现状
二十一世纪,随着经济的不断发展,依赖于电力管理侧指令的被动电力需求侧响应已不适用[1],开始发展成为以市场经济方式为主导的主动电力需求侧响应。目前,我国对电力需求侧响应的综合研究和实践还处于初级阶段,在电力需求侧响应的相关领域中[2],分时电价和可中断负荷电价等方面的研究比较深入。为了使得电力需求侧响应项目顺利实施,基于需求侧负荷管理城市综合试点相关工作先后在苏州、佛山、北京和唐山等地区开展实施[3],四个城市都取得较为满意的实施效果。对电力需求侧响应的认识,已形成共识,电力需求侧响应措施不仅可以提高电力系统运行的可靠性,同时有利于充分利用电力系统的发、输及配电设备,可以延缓建设新电厂、新输电和配电设施的需求,由此降低因此所引起的环境及土地侵占等问题[4]。根据预测分析表明,如果我国能够有效地实施DSM项目到2020年的话,可以减少电力系统装机容量约1亿kW,还能够节约800010000亿元的资金投入在电力网络基础建设方面,这将有效缓解资源、环境和财政等各方面矛盾[5]。我国的峰谷电价比不合理,在我国峰谷电价比通常情况下仅有23倍,国外的峰谷电价比一般情况下为58倍,甚至可以达到910倍。另外,我国需求侧响应实施省份相对较少,同时在可中断负荷管理方面,给电力用户的经济补偿还没有统一的标准且过于笼统不够完善,对电力用户还没有办法起到有效的激励作用[6]。
美国的电力需求侧响应主要是家庭中的可中断负荷,如热水器、空调、洗衣机等家用电器[7],下面从政策环境、分时电价、基于价格激励的电力需求侧响应、实施效果等四个方面分析美国的需求侧响应现状。政策和环境。美国的电力市场环境比较开放,就目前而言,是世界上DR项目实施最为成熟的国家。美国电力需求侧响应的运作模式主要有政府直接管理[8]、电网公司管理以及独立第三方管理三种形式。主要提供的市场产品有电力系统装机容量、能源实时平衡以及辅助备用服务等几种[8]。美国印发了《能源政策法案》,明确表明将大力支持电力需求侧响应项目的实施;美国的分时电价最早出现在二十世纪60年代,分时电价的普及和执行程度依赖于政府和相关部门的重视和政策鼓励程度。该项目每年为美国贡献的电力需求侧响应容量资源大约在228万kW左右。分时电价项目实施广泛,但是参与率不足是分时电价项目存在的主要问题[9]。基于价格激励的电力需求侧响应。基于价格激励的电力需求侧响应最早在2000年由海湾电力公司实施,主要包括固定期限尖峰电价、变动期限尖峰电价、变动峰荷电价和关键峰荷折扣电价等四种类型;二常见的实时传输协议实施类型主要有日前实时电价和两部制实时电价两种类型[10]。参与基于价格激励的电力需求响应的电力用户主要以大型商业类电力用户为主,每年的电力需求响应对装机容量资源的贡献超过1097万kW,由于可削减、可中断电价的优惠在不断地缩小,此外电力用户承担风险也较大,所以近年来参与基于价格激励的需求响应项目的电力用户数目在不断下降。目前,美国的PG&E、SCE等电力公司都已建立了以市场为主体的电力需求侧响应项目[11]。根据统计,由于实施了电力需求侧响应项目,使得整个美国的电力系统的高峰负荷降低了1.4%~4.1%;另外,通过实施电力需求侧项目,整个美国的高峰负荷削减量达到了22.901MW,到2010年整个美国的高峰负荷削减量增加达到32.845MW,高峰负荷的削减量增加了42%[12]。
1.2.2 电动汽车参与电力辅助服务研究现状
目前国内相关领域的研究主要包括:基于蒙特卡洛模拟的充电负荷计算、电动汽车接入对配电网的影响、电动汽车有序充电、电动汽车参与电网辅助服务等。对中国未来电动汽车充电负荷水平进行了计算和分析[13],采用蒙特卡洛模拟法进行电动汽车充电负荷计算。电动汽车的无序接入对配电网的电能质量和经济运行都有很大的影响,如何解决电动汽车大规模接入后对电网的影响一直是研究的热点[14]。从电动汽车充电负荷的建模仿真、对电网的影响以及实现V2G等三个方面入手,研究了电动汽车接入对配电网电能质量和经济运行的影响。王帆等人研究了电动汽车接入对配电网网损的影响。田立亭等人给出了电动汽车对电网影响的评估步骤和方法,从配电网、输发电以及多个角度提出了电动汽车对电网影响的解决方案[15]。有序充电是解决电动汽车大规模接入对电网影响的有效手段。可以通过电网的动态分时电价来实现有序充电策略。也可以用非线性优化方法,以负荷曲线波动最小为目标函数,寻求电动汽车最合适的起始充电时刻实现有序充电。杨冰等人对通讯正常、通讯故障以及有预测误差的情况下,对集中式和分布式有序充电进行比较[16],仿真结果表明分布式有序充电具有更强的抗干扰能力。鞠晨等人提出了一种电动汽车与配电网之间的非合作博弈模型。引入交替方向乘子算法将集中式充电问题转换为分布式充电来进行求解,不仅解决了集中式充电通信难度大的问题[17],还有利于保证电网和用户的信息安全。分时电价策略可以引导车主在电价低的时候充电,在电价高的时候放电,提高车主满意度,改善电网的电能质量,实现“削峰填谷”。高亚静等人对充电功率和A、B、C三类电动汽车基于分时电价的需求响应进行建模,不光考虑了电网的利益,还考虑了车主满意度,在pareto优化基础上,利用粒子群算法求解,采用K均值聚类划分峰谷时段,算例表明该方法可以改善负荷曲线,优化电网的运行状况。佟晶晶等人建立的充电优化模型以充电费用最低[18]、负荷方差最小为目标函数,以功率、剩余电量(StateOfCharge,SOC)、电池充电爬坡率为约束条件,用TOPSIS多目标决策分析方法求解模型,验证了该方法的有效性、快速性和可行性。肖浩等人以功率平衡、备用容量、分布式电源处理、节点电压为约束条件,用改进的非劣排序多目标遗传算法进行模型的求解,选取IEEE34节点作为算例,算例表明该方法可以在保证电网经济运行的基础上[19],降低负荷的峰谷差。苏海锋和刘志珍等人提出了一种不改变现有配电系统规划,就可以满足较大规模的电动汽车群接入充电的分时电价方法,采用正序谷时段和倒序谷时段两种有序充电方法,来实现电动汽车在低谷时段充电,算例验证了其有效性。电动汽车作为一种新能源接入电网,可以参与电网的辅助服务、改善电网质量、降低网损、防止电网阻塞等问题。王锡凡等人描述了近年来电动汽车充电负荷参与电网辅助服务和电动汽车充电负荷的调度控制的研究成果,并且对今后的研究方向做了详尽的综述。麻秀范采用了双层优化模型[20],将上层模型中的分时电价和阻塞电价作为下层模型的输入,在下层模型中迭代优化,研究实时电价和阻塞电价对负荷曲线的影响,证明了该方法可以提高电动汽车负荷的利用率、减小电网阻。刘佳伟等人在对电动汽车充放负荷和对居民负荷分别建模的基础上,采用最优潮流的方法对阻塞价格进行确定,各代理商根据调度控制的结果和确定的阻塞价格来安排居民负荷和电动汽车负荷,避免电网出现新的负荷高峰和电网阻塞的情况。孙辉等人根据电网的功率情况来判断是否出现阻塞,对于出现阻塞的线路,根据潮流追踪的原理,确定阻塞缓解的奖励机制,最后通过调整充电服务费来改善电网阻塞问题。施羽展等人采用主动防止输电阻塞的思想[21],引入判断矩阵和阻塞度的概念,建立了基于电价的神经网络预测模型,最后采用美国加利福尼亚州的电价信息进行算例验证其有效性。闫攀等人在传统输电阻塞模型的基础上,加入可中断负荷的概念,可以用于输电阻塞管理,用IEEE6节点系统验证了其有效性。
自1970年以来,全球范围内汽车产业始终保持着快速增长趋势。预计到2050年全球汽车保有量将会达到25亿辆[22]。可以预见,随着电动汽车技术的不断完善和充电设施的不断增加,全球电动汽车相关产业和电动汽车的数量一定会得到迅猛发展。AdornatoB等人对电动汽车的起始充电时刻和车主的出行行为进行了研究,分析了不同充电模式下的充电负荷分布。美国俄亥俄DNV研究院针对V2G快速充电展开研究:研究结果显示了电池循环是影响V2G快速充电的主要因素,当对耦合循环机制[23]、驱动周期和监管周期研究足够深入时,可以更精确的估测V2G的利润。南安普顿大学针对V2G双向充电进行研究,V2G可以将电动汽车电池提供的大量聚合的电力汇集到电网,来减少对不可再生能源的依赖。当一天中电力需求不断波动时,加载服务实体(LoadServiceEntity,LSE)可以帮助估算每天需要使用的电量,并且从发电方提前购买预估电量。如果当天的用电需求高于预估用量,用电方需从中介购买额外的电量,电网需要储存一部分待用电量满足用电方的额外电量需求。待用电量可通过燃烧煤炭和混合气体进行发电。V2G可以通过快充储存新能源来减少对LSE的依赖性[24]。
1.3 研究内容与技术路线
1.3.1 研究内容
本文概述了电力需求响应与电力辅助服务的相关基础理论。电力需求响应作为一种有效的电力资源管理方式,通过调整用户的用电行为来响应电力市场的价格信号或激励措施,实现电力系统的优化运行。而电力辅助服务则是为了保障电力系统的安全稳定运行而提供的一系列服务。在此基础上,本文详细阐述了基于价格型需求响应和激励型需求响应的两种主要方式,并介绍了电力需求预测的经典方法和智能方法。重点研究了电动汽车参与需求响应的潜力评估分析。随着电动汽车的普及和充电设施的完善,电动汽车在需求响应中发挥着越来越重要的作用。本文首先通过构建基于BP神经网络的电动汽车保有量预测模型,对区域电动汽车的保有量进行预测。在此基础上,结合电动汽车的充电特性和用户行为,建立了基于BP神经网络和蒙特卡洛模拟的电动汽车充电负荷预测模型。通过这两个模型,本文有效地预测了电动汽车的充电负荷及其对电力系统的影响。对比电动汽车在不同电价政策下的充电行为,评估了电动汽车在需求响应中的贡献和潜力。同时,本文还探讨了电动汽车充电站的建设和运营策略,分析了如何通过市场机制促进电动汽车充电站的发展,从而进一步提升电动汽车在需求响应中的作用。通过本研究,我们不仅可以更深入地了解电动汽车在需求响应中的潜力和应用前景,还可以为电力系统的优化运行和电力市场的改革提供有益的参考和借鉴。本研究旨在全面评估电动汽车参与需求响应的潜力,并探索其在电力系统中的优化应用策略。通过深入研究和分析,我们期望能够为电动汽车和电力系统的可持续发展提供有力的支持和推动。
1.3.2 技术路线
图1.2 技术路线
2电力需求响应与电力辅助服务理论基础
2.1 电力需求响应
2.1.1 电力需求响应理论
美国电力科学研究院早在1984年提出了需求侧管理的概念,是为了应对能源危机而采取的鼓励储能[25]、抑制负荷增长的管理措施,需求侧管理是指电力企业通过制定一些规划和措施来影响电力用户的用电行为、改变电力负荷曲线,以达到保障电力系统的电力电量平衡的目的[26]。
随着电力市场的发展与完善,电力系统的利益主体逐渐向多元化所转变,电力需求响应也随着电力工业市场化改革和电力市场建设而从电力需求侧管理过程中演化而来[27]。电力需求响应是以市场手段和价格工具为载体,当需求方在收到供应方发出价格或者激励信号时,用户结合自身的生产和消费情况,改变其电力负荷水平的行为。
电力需求响应与电力市场是密不可分的,由于电力作为一种商品除了拥有商品的基本属性外,还具有无法大规模储存以及生产和消费需要实时平衡等特点,虽然现有储能技术的发展可以缓解一部分电力的供需不平衡[28],但是电力仍不能像其他产品一样长时间储能等所需之时再进行使用。2015年《中共中央国务院关于进一步深化电力体制改革的若干意见》(中发[2015]9号)发布以来,我国新一轮的电力体制改革走向全面深化,电力现货市场也在不断成熟和完善。当前随着经济的快速发展和用电需求的迅猛增长以及在双碳目标的推进下,当前的电力供需矛盾、负荷峰谷差加大问题进一步突出[29],另外在2021年由于煤炭供应价格的上涨,通过调整发电来解决供电紧张问题更是难上加难。在这种情况下,电力需求响应得到了进一步的发展,通过价格信号和激励措施等手段来增加需求侧在市场中的作用,并将电源侧和需求侧的资源进行综合规划,更是适应电力市场发展的必然要求。电力系统需求响应运行的基本框架如图2.1所示。
图2.1 电力系统需求响应运行基本框架
2.1.1.1基于价格型需求响应
基于价格型的需求响应就是让电力用户根据不同时段、不同地域的价格信号结合自身的负荷情况做出调整用电方式和用电时间的行为。在当前的电力市场环境下,电网以及售电公司通过将现货批发市场购电[30]、长期购电合同、自身发电的发电容量等形式进行组合向电力用户提供电能。随着电力巿场改革的不断深入,国家和市场都希望采用能将电力批发市场和零售市场联系起来的价格机制,我们称之为动态调整的价格机制。在这种电价机制下的一个基本目标就是将批发市场的成本信号能够传递给终端的电力用户,通过让一部分电力用户来承载这种价格信号,可以使得现有的资源配置更有效[31]。当前最为常见的价格机制主要为分时电价机制、实时电价机制、尖峰负荷电价机制三种方式。
(1)分时电价机制
分时电价机制是基于电能时间价值设计的,是引导电力用户削峰填谷、保障电力系统安全稳定经济运行的一项重要机制安排[32]。分时电价机制又可进一步分为峰谷电价机制、季节性电价机制等[33]。峰谷电价机制是将一天划分为高峰、平段、低谷。季节性电价机制是将峰平谷时段进一步划分为夏季、非夏季等并作差别化安排,对各时段分别制定不同的电价水平,使分时段电价水平更加接近电力系统的供电成本,以充分发挥电价信号作用,使得用户根据自身的经济性出发,尽量将峰段用电转移到谷段用电。进而促进电力系统的安全稳定运行,减少扩容以及备用电源的投资,提升资本的利用效率。
(2)实时电价机制
上文提到的分时电价多数是基于地区电网设定的,在配电网中会出现负荷峰谷出现时间与分时电价峰谷时段不一致的现象[34]。而实时电价机制指的是不同时段的电价不是提前设定的,而是与批发市场的价格与日前或者实时现货市场的购电成本挂钩。当电力供应紧张时,需要调动更高成本的发电机组进行顶峰发电,此时实时电价机制则能直接将批发市场和现货市场价格实时联系在一起,起到引导电力用户优化用户负荷来进行响应的作用,因此实时电价机制对实施电力需求响应具有重要意义。
(3)尖峰负荷电价机制
尖峰负荷电价是一种相对比较新的动态电价机制,其关键点是在分时电价的基础之上,当负荷达到很高或者尖峰时刻设置的一个尖峰电价。一般情况下分时电价的峰谷时段电价在一年中不同季节、不同时间段总是提前确定的,而尖峰负荷电价的时段是不确定的,是根据具体的负荷情况,由电网调度在一定的时限内确定尖峰负荷时段,并于此来设定尖峰负荷电价。在这种电价机制下能够更好的通过市场手段达到削峰填谷的目的。
2.1.1.2基于激励型需求响应
基于激励型需求响应是直接通过奖励的方式来激励电力用户参与电力系统所需要完成的负荷削减项目。对于电力用户、负荷聚合商以及虚拟电厂等运营商而言,参与激励型需求响应项目不仅可以进一步的控制其自身的用能成本还可以提升电网的供电可靠性,所以各方利益主体都比较青睐。在此主要介绍一下激励型需求响应项目中的直接负荷控制项目、可削减可中断负荷项目、需求侧投标项目以及辅助服务项目等。
(1)直接负荷控制项目
直接负荷控制项目主要目的是为了避免电力系统的紧急情况发生,一般运用在电网负荷高峰时期,在没有提前通知电力用户或者很短时间内才通知电力用户的前提下,通过相关调度指令直接关闭其用电设备以达到削减用电负荷的目的。由于该项目是在没有提前通知电力用户的状态下进行,所以需要提前与电力用户进行合同的相关约定,包括参与响应周期、负荷削减周期以及参与负荷削减总量等等。而且对参与响应的电力用户应支付相对较高的补充费用来弥补相应损失。该项目主要针对小型商业用户以及居民的空调、加热装置等设备。
(2)可削减与可中断负荷项目
可削减、可中断负荷项目是指电力调度部门与电力用户通过协议约定,在电网遇到紧急情况或者负荷高峰时期接受响应的调度指令进行削减或者中断其用电负荷。如果电力用户履约进行了相应的削减则会得到一定的激励性奖励,如果没有进行削减将会受到相应的惩罚。这是一种为了预防电力事故的发生而设计的一种备用项目,通常需要具备一定的容量要求的工业和商业用户才能进行参与需求响应。
2.1.2 电力需求预测理论
2.1.2.1经典预测方法
应用较为广泛的主要是基于时间序列,通过对历史及相关数据的分析,建立起相关变量之间的数量关系模型。在经典的预测方法中计算出的结果主要供政府以及电力相关的部门掌握未来电力需求总体的一个趋势或是方向性的结论,而不能弄清楚或深入的分析电力需求变化的结构情况。因此该方法主要应用于其他预测方法对未来预测结果的检验。应用较为广泛的经典预测方法有比例系数增长法、电力弹性系数法、季节时间序列增长法等等。
(1)比例系数增长法
比例系数增长法,假定在区域范围内未来一定时期的电力需求与过去有着相同的增长比例,然后根据区域的历史电力需求数据构成一个预测的样本,以历史数据求出电力需求增长的比例系数,再按照该按比例系数对未来的电力需求发展进行预测。我们设第n年的用电量为o,千瓦时,则从第n年至第m年(m>n)用电量的平均增长率n可以用公式进行表示:
公式要有编号,例如
(2-1)
(2)电力弹性系数法
在经济学的理论中,弹性是指一个经济变量相对于另一个变量展现的一定比率的变动特性。一般来说,这两个经济变量之间存在函数联系,这使我们能够使用弹性描述因变量对变量变动的敏感度。因此,我们决定在未来电力需求预测中采用这个概念,其中s是电力需求的弹性系数,则可以由公式进行表示:
(3)季节时间序列增长法
电力需求预测通常在一个月或一个季度内进行短期评估,电力系统中出现的某些需求特性通常与季节变动相关联,这些特点包括但不限于风扇、空调系统、冷饮供应和供暖系统等。因此,我们可以假设电力的需求量与时间紧密相关,并可以利用季节性时间线的预测策略来估算电力的需求。此预测技巧展现出发展趋势、季节性特性、周期性和不规律性。通常,我们使用季节系数法来进行预测,主要涵盖了以下几个计算阶段,主要有以下几个计算步骤。
步骤1:收集历史年份中各个季节或者月份的时间序列电力需求样本数据。
步骤2:计算时间序列下的电力需求样本数据算术平均值x。
2.1.2.2智能预测方法
随着我国经济和电力需求的快速发展,虽然经典的电力需求预测方法易于掌握和操作,但这些方法存在的局限是显而易见的,它们已经不足以满足现代、复杂和多变的电力需求预测的需求。在传统的预测方法里,历史数据需要高度的稳定性或极为明确的规则。若变量经历变化的电力需求预测,其预测可能产生较大的偏差,同时预测的时间粒度也可能不够细致。当前,智能的预测策略是基于持续的自我改进和学习,它能够显著地补足传统预测技术的缺陷。在当今时代,普遍使用的智能预测手段主要包括BP神经网络[122]、卷积神经网络以及循环神经网络等技术。
BP神经网络(Back Propagation Neural Network,即BPNN)作为一种基于误差反向传播学习的多层先导性神经网络模型,已经开发出了一个简洁但三重的人工神经网络架构,包括输入层、隐藏层以及输出层。通过构建三层数据关系体系,可以达成在输入与输出之间对任何复杂函数关系的非线性映射。如果输入层的节点数量是n,而输出层的节点数量为m,并且其中间隐层并没有与实际输入或输出形成直接联系,那么这样的网络结构便构成了从R到R的一个高度非线性的映射关系。BP神经网络预测技术无需详细的数学描述该映射,它仅是在选定的网络拓扑结构条件下,通过应用学习算法来调整各个神经元的阈值与连接权量,以实现误差信号的最小化。这一预测算法针对数据样本允许使用逐步的学习策略。每一次选取一个特定的训练样本,然后根据这一个样本的结果来调整每个神经元的阈值和连接线权重,直到最终收敛性,最后再选择下一个训练样本继续进行调整和修正,重复这一过程直至对所有样本都满足精度要求。BP神经网络预测方法的结构如图2.2所示。
图2.2 神经网络结构示意图
2.2 需求响应
2.2.1 需求响应概念
电力市场的真实价值是市场需求与供应之间互动互动的结果,而价格则会随着供需条件的变动而调整。然而,从实际经济环境来看,电价在一段相对长的时间里始终保持稳定,特别是从需求端来看。由于消费者无法根据当前市场的波动来调整电力使用频次,这导致他们难以对市场价格趋势给出合适的反馈。而且,电力的提供是一个实时的平衡机制,这可能使其价值在某一特定范围内发生波动。但是,在电力市场中,受到如预先或未计划的停机事件、容量的约束、电力传输的难题以及发电方与交易者过分利用市场动力等多重因素的影响,电价的稳定性在某些情况之下可能直接对电力系统的稳定性造成伤害。电力网管理员当前的主要工作是解决前述问题,这意味着他们可能需要增加电力的发电量和输出能力。这些依赖于电力提供商的持续和稳定运行,这不仅浪费了宝贵资源,还导致了效率低下的价格策略。需求响应作为一种电力需求侧管理的手段,对于促进电网与用户间的交流互动,和确保电网的稳定运行,扮演了极其关键的角色。需求反馈是一套全面的策略,该策略在电力市场的定价体系中将市场需求整合了进来。在电力系统的规划和设计时,消费者根据价格趋势或具体的激励策略进行调整,进而对电使用习惯进行明智的优化。随着智能电力网络的持续发展,它为电力需求的有效响应提供了有力的技术保障,增强了电力管理的调度特性,并通过需求反应将负荷资源整合进传统电力管理系统。
2.2.2 需求响应分类
需求响应可被主要划分为基于定价和基于奖励的两类,这些类别根据用户特殊的反应方式来进行分类。首先是电价的反馈情况,而另一个则涉及到对现行政策的反应。电价的反馈是用户在决策电价时间段时需要考虑的,它能将电价的使用负担从高峰时段转移到低负荷时段,这样有助于缓解电费的消耗。因此,消费者面对电价信号做出调节时,完全可以自行决定。在顾客开始基于价格反馈需求前,只需与电力行业达成电价相关的合同。当实行电力价格策略时,部分大型的用户不得不采用分时计费或制定一个默认电费策略。对其它用户而言,他们只需要根据自己的特定需求,选定合适的电价设置。需求响应措施主要是基于价格,具体来说,它们主要包括分时电价(Time-of-UsePrice TOU)和实时电价(Real-timme Price).RTP)、CriticalPeak Price所代表的高峰电价.CPp代表)的标识。
2.2.3 分时电价
针对电动汽车充电和放电过程的具体特点,本研究依据分时电价原则来引导与电动汽车相关的各个环节。在名为“分时电价(TimeOfUse pricing TOU)”的概念里面,根据电力需求经常出现的高峰与低谷,把一日(或一年或一月)细分为若干个时间段,每个时间段与其对应的电价类别是不同的。细致地阐述,它主要涵盖了如峰谷电价、季节性电价以及丰枯电价等几个重点领域。通常的设定电价会在电力需求最大时设置为相对较高的值,在负荷下降时则会做出相应的价格下调。通过这种做法,我们能够有效地将高峰时段(季节)的某些工作需求降至最低,进而成功达到削减高峰和提高低谷频率的目标。
在设计分钟电价策略的时候,我们不只要预测电力的供应成本,还应深入研究用户在负荷响应过程中的参与程度。当我们正在制定分时电价方案的时候,我们积极地将其他宏观方面,或现有无法直接评估的方面,进行了简化和优化。分时电价制度的构建主要触及到两个关键层面的具体信息,即不同时间段的电价设定以及各个时间段内的电价水平。
(1)时段的划分
在时段划分方案需要达到以下需求:
①各时段的负荷都各具特点,峰时段负荷高,谷时段负荷低,能够客观准确地反映出负荷曲线的形状特点。
②)电价方案要具有可操作性和便捷性,各时段时长设置要均匀,每个时段应保证不小于2 小时。
③有利于电力用户调整用电时间和负荷结构。
④要结合用户的实际用电需求,防止在实施电价方案后出现新一轮的负荷高峰出现。
⑤在实施电价方案后,不能够影响电网公司的经济效益
2.3 成本效益分析法
成本效益分析法,也被称为Cost Benefit Analysis CBA,是一种基于货币单位来评估在生产和运营中资源分配与预期收益的方法。在市场经济环境中,为了更系统和科学地掌握投入与产出的均衡关系,每个经济实体都会仔细研究和判断其进行的某些经济活动是否可能为其经济产生积极效果或者导致损失。从成本与回报的分析角度出发,核心目标便是追求效用的极致优化。为了确保经济利益能够达到最高水平,所有参与某一经济活动的实体都需要采纳不同的策略和方法,以期望能够以最少的资源投入获得最大可能的利润。与此类似,如果希望在经济活动中以最少的成本得到理想的产量,就需要持续地分析活动中的支出和这些成本带来的收入。
通过成本与收益分析的手段,我们能明显地看出三大核心特征:盈利性质、经济效益和计算能力:
(1)自利性。当讨论成本和收益时,追寻收益成为了其主要理念,但在这一探索中,个人的深切利害关系经常被展现出来。行为实体常采用成本收益分析法来追求有意义的收益,这进一步证实追求个体利益作为其主要的驱动因素和目的是至关重要的。此外,在进行了成本与收益的深度探讨之后,行为者往往过分侧重于自身的价值追求,却往往漏掉了其他人的实际需求与环境,这种做法显然带有很强的意图,进而表现出了他们追求个人利益的倾向。
(2)经济性。大部分参与者都追求以自我利益为驱动的目标,他们在经济行为上努力用最低的成本来寻求最大的收益,这样做往往能够催生经济运作的高效化。在进行成本收益分析时,我们同样重视最大程度地追求经济和效率。
(3)计算性。为了保证企业经济活动不仅满足自身利益,还要符合高效经济的标准,所有参与者在经营管理时都必须对资金的使用和输出拥有深刻的了解和认知。
3 电动汽车电力需求响应潜力分析
3.1需求分析分析
3.1.1电动汽车充电量需求
影响电网电力峰值和谷值的因素包括用户的行为、不同的充电和更换模式以及各自的充电功率。本次研究使用巴斯(Bass)扩散模型预估武汉市电动汽车的增长速度,并选择了我国的新能源汽车销售规模作为研究对象,其中n (t)代表t年新增的新能源汽车数量,a代表创新系数(外部影响),b代表模仿系数(内部影响):
式中:n (t)为r年新增新能源汽车数量;(t)为r年累计新能源汽车数量;m为最大市场潜力;a, b分别为外部影响(创新)系数、内部影响(模仿)系数。
针对目前武汉市高达数万元的电动车辆牌照价格,武汉的私人购车者有资格享受免费的牌照和现金补助政策,这些支持措施无疑为电动汽车事业带来了强大的推动。鉴于当前机动车的限号和财税支持政策在将来带来一定的不可预测因素,我们研究了两个电动汽车的发展场景,分别是常规增长情境和高速增长景象。特别是,对于常规增长场景,根据2010-2015年的燃油汽车和电动车销售历史数据以及2020年的规划数据进行了匹配,从而确定了创新和模仿系数a=0.01.b=0.08。另外,考虑到科技的不断发展以及电池动力成本的迅速下降等多个变量,能源研究所等相关机构对于电动汽车到2030年销量的增长趋势持更为乐观的态度。因此,在除了常见的情境外,本研究还提出了一个新的高速增长场景,该场景中创新系数将保持不变,模型系数b将被选为变量。通过150号模型,我们将车辆的销售增加速度推至2030年,从而在J清景的标准发展中达到203的位置。年度内,电动汽车的销量占据了总汽车销量的28%,电动车的总数量高达155万辆,其中小型电动乘用车占据了144万辆;在快速增长的情况下,到2030年,电动汽车的年销售量将占总销售市场的43%,而电动汽车的保有量将达到245万辆,其中电动乘用车将占到228万辆。值得关注的是,插电式混合动力汽车和纯电动汽车的市场比例将保持稳定,分别是76%:24%。武汉市目前销售的电动车的百千米电量需求在10-20kWh范围内,鉴于电动车的综合能效相对较高,未来的发展空间不大,本研究设定2030年时,车辆电力消耗及充电能量应分别达到百千米15kWh和7kW。在2015年,武汉市的比亚迪秦和荣威E50车型的用户日均行驶距离分别为31千米和26千米。考虑到随着交通机械化水平的逐渐提升,武汉市民的出行强度有可能进一步加大。因此,本研究预计随着电动乘用车日均行驶距离以每年三%的速度增长,到2030年,日均行驶里程有望达到50千米。根据预测,至2030年,大型电动客车的每百千米电力消耗预计为100kWh,平均日均行驶里程预计为300km,而充电功率为100kW,同时电动乘用车和电动客车的充电效率均为90%。因此,在电动汽车持续发展的背景下,到2030年,武汉市的电动汽车充电量需求将约为12.4TWh,占当年全市电力使用量的7.4%;在快速增长的背景之下,每年的充电需求高达19.6TWh,这在当时的整个城市电力消耗中占到了11.2%。电动汽车充电量需求为不同类型车辆(私家车、公务车、公交车、出租车、物流车)、不同技术(纯电动汽车、插电式混合动力汽车)充电需求的加总:
3.1…2电动汽车充电负荷特性
电动车辆的随机充电负担作为研究充电负荷属性与调节负荷潜能的核心。电动车的充电负荷特征大多数时候受用户充电方式的影响,而对用户充电行为产生影响的关键因素包括他们的出行方式、停车习惯、充电的地域和时间分布,以及使用的充电模式(或功率)等等。为了深入探究上海市内各种车型的充电行为模式,本项研究针对武汉市的73辆不同类型的电动汽车(分别包括10辆电动公交车、10辆电动出租车、10辆电动物流车、16辆电动公务车以及27辆电动私用车)进行了停车和充电时间表的详细调查。从这些车辆在早晚高峰时间段(即小于7点和17-19点)出行频率来看,用户大多数选择在这些时间段内出行,这些时间点的出行频次分别占到了全年出行总量的8.8%和10.2%。同时,这些车辆在午休时段也展示出相对稳定的小高峰出行模式。出行的低谷期是从凌晨1号至5号,这个时间段的总出行次数相对于单日的出行次数的百分比不到0.7%;如果从单一的出行时间角度看,电动车辆的使用者单次出行的平均时间是35min,而在这一时段内有51%的用户选择了25min为出行时间。如图3.1所示,文中的四种车型的24h停车时长的概率分布已经被列明。以私家车为研究对象,许多用户更喜欢在夜晚为居住社区充电,并且目前私家车车主所建的充电设备通常是安置在住宅停车场。根据武汉市经济和信息化委员会的相关规定(自2015年开始,武汉市的电动汽车使用者必须预先安装充电桩后才能重新上牌),私家车的停车位在晚上21fl出现了高峰。车辆停车低点通常出现在上午8点左右,以及傍晚大约18点左右,这是在早上6点的时段;晚上22:0,常常是电动出租车的高峰停车时间。直到凌晨时间段为止。单个电动汽车的充电负荷曲线是由充电的起始和持续时间来决定的,但是,一个电动汽车的群体充电负荷则是由多个单体汽车的充电负荷曲线相互重叠形成的。本项研究主要针对武汉地区电动汽车数量的增长趋势和电动汽车用户的调查数据,计算并绘制了一个电动汽车充电负荷曲线。研究结果揭示,在电动汽车的高速增长环境下,电动汽车的充电负荷高峰值出现在晚上19:00附近,同时低负荷也出现在凌晨4点左右,其峰值电压为15MW。在这两个峰值电压曲线的叠加作用下,电网负荷峰值达到了37.93GW,在晚上20:00附近达到峰值,低谷电压为21.07GW,并在早上6:00左右再次出现。这一电网负荷峰谷差从11.90GW上升至16.86GW。综合考量,在随机充电的场景下,电动汽车的充电负荷明显升高,导致傍晚高峰时电力负荷增加,全天的峰谷差距也会加大,从而对电网的运行环境产生一定的压力。
图3.1 武汉市各类电动乘用车停车时间概率
图3.2 2种情景下2030年武汉市夏季电动汽车充电负荷
3.1.3 需求响应的潜力
通过对武汉市电动车用户行为的调查,我们注意到在公交、租赁等车辆运营领域,由于其交通密集且需要大量的电量,再加上有限的停车时长可以适应负荷调整,这使得充电行为模型在优化上的空间受到限制。与此相对,私家车和公务车在停车时花费更多的时间,但它们的实际充电时间相对较短。特别是在高峰时段(例如中午12点和凌晨5-6点),不少电动汽车选择了非充电的方式停车,这使得它们拥有了更高的需求调整和响应能力(参见图3.3)。对于普通的私家车,其平均每天的运行时长常介于2到4小时,而在其余20小时的停车时间段,都可以通过电网来参与需求响应的调整,这意味着它们在需求响应上拥有更广阔的调整机会。为了深化对武汉地区多种电动汽车车型充电行为的理解,本项研究详细比较了电动私家车和电动公务车的用户停车和充电的可能性。如第七图展示,在电动汽车高速发展的背景下,私家车和公务车的随机充电以及规律充电都呈现出相应的负荷曲线。从需求变化的角度来看,当大多数原先仅在午后至夜晚使用的充电电量逐渐转移到凌晨时,这种变化明显地提升了电动车在充电负荷调控方面的表现。
图3.3 2种电动汽车发展情景私家车/公务车随机及有序充电
负荷
3.2 电动汽车参与需求响应潜力分析
前文探讨了电动车、公交车和出租车这几种车辆的充电特性,并通过建模方式对其充电需求进行了深入的预估和分析。为了让电动汽车与区域电网更为顺畅地互动和推动其健康发展,我们计划充分利用电动汽车的可转移和可中断充放电需求侧的响应资源。基于电动汽车充电负荷的预测数据,我们会深入研究其参与区域电网响应的潜能。
自今年夏季开始,这一地区的电网达到了其峰值负荷,为21580MW,并在2022年6月21日被记录下来。依据中国电力企业联合会公布的《中国电力行业年度发展报告2022》所做的电力负荷年平均增长预测(5.1%),电网至2030年的最大负荷估计将达到32127.22MW。从图3.4来看,该地区电动车的充电总需求峰值预计会达到17330.54MW,根据这一数据推算,电动汽车的充电需求将占该地区电网最大负荷压力的53.94%。因而,电动车的迅猛增长预计将对电力系统产生较大的负面效应。在缺乏优化控制和无序的环境中,电动汽车的充电负荷在日间高峰时段与区域电力网络的基负荷会有一些重叠。这种重叠可能会引发区域电网负荷的相应上涨。然而,在晚间的第二高峰时刻,电动汽车的充电负荷可能有所减缓,但依然不会落在区域电网负荷的最低谷阶段。所以,对电动汽车的需求响应业务实施实施并优化其充电负荷是必要的。
图3.4 电动汽车总充电负荷与区域电网负荷对比
公交车站因其严格遵守相关制度,每日的行驶时间表与行程都相对固定,因此充电时面对的负荷管理相对较为简单。公交车通常在夜间充电,并在白天的某个适当时间段补充电量。这样的充电模式与我国现阶段的调负荷需求相契合,但其可以控制的电力负荷裕度相对较低。只要保证次日的运行需求得到满足,我们可以在夜间的各种时间段中实施一定层次的充电优化操作。在出租车的服务领域中,电动汽车被广泛采用作为核心手段,并始终追求更高的运营效率。但由于根据乘客的数量在高峰时间段不能选择充电时间,所以可供优化