目录
1 绪论 2
1.1 研究背景及研究意义 2
1.2 研究目的 2
1.3 国内外研究现状 3
(1)关于低压台区潮流算法的当前研究状况 3
(2)关于AMI数据应用的当前研究状况 6
(3)关于含源低压配电网的拓扑识别算法的当前研究状况 6
1.4 研究方法 8
(1)重点: 8
(2)难点: 8
(3)计划实施的方法: 8
1.5课题内容 9
2 相关理论基础 10
2.1 AMI简介 10
2.2低压台区的构造 12
2.3LVDN拓扑关系自动识别技术 13
2.4 配网拓扑连接校验原理 16
2.4.1数据预处理方法 16
2.4.2 拓扑关系校验原理 17
3、10kv低压配电网拓扑识别 23
3.1低压台区拓扑结构的组成 23
3.2 低压配电网的量测体系 25
3.3不良数据剔除 25
3.4基于电压与有功功率数据的线户关系识别 26
3.4.1 线路特性分析 27
3.4.2介绍了一种基于K-means和PCA的方法来识别线户之间的关系 28
4. 算法描述及算例分析 30
4.1 算法描述 30
4.2 放着分析 31
5结论与展望 32
5.1结论 32
5.2展望 32
参考文献 34
1 绪论
1.1 研究背景及研究意义
为了确保配电网的安全分析与控制决策,正确的配电网拓扑结构显得尤为关键。在实际工作中,由于受到各种因素的影响,传统方法对配电网拓扑关系的判断会出现一定偏差。由于配电网的线路数量众多且经常进行电网的改造,这经常导致配电网的拓扑结构出现偏差,从而使得电力调度的工作人员难以迅速理解和掌握正确的拓扑结构,这进一步对配电系统的正常运行和管理产生了负面影响。由于传统配电网拓扑分析方法在对拓扑关系的判断上存在一定局限性,从而造成了许多问题。因此,准确地校验和校正配电网的拓扑关系显得尤为重要,具有深远的实际意义。
为了应对这种类型的问题,当前的低压配电网户变关系检测手段主要可以划分为两个主要类别。首先是通过人工进行现场识别,这种方法是通过携带台区识别仪进行巡查来实现的。二是利用台区识别方法,通过对低压线路中各设备运行状态进行实时监控并将其作为判断依据来确定各线段的户变连接方式。目前市面上的台区识别设备主要使用载波通讯技术和脉冲电流技术。脉冲电流法是一种通过台区识别仪发出高频脉冲信号来识别台区用户的方法,但这种方法需要在变压器的出线端安装电流互感器,这不仅存在安全隐患,而且可控性较差。二是载波通信法,利用电能表或电表自带的通信接口实现对台区的远程控制,但这种方式需要架设专门的线路才能进行组网,成本高、可靠性低。载波通信法是一种方法,其中台区识别仪在电力线上传送载波信号,但由于变压器的感抗较高,因此在传输过程中无法通过变压器,只能在相同的台区内进行传输。
1.2 研究目的
本研究的目标是基于测量数据自动识别低压台区的拓扑结构,主要集中在提高低压台区电力网络的智能管理能力和操作效率上。目前在低压台区拓扑识别领域,国内外学者提出了大量方法,但仍存在一定问题需要解决。随着智能电网的持续发展,低压台区作为电力网络的核心部分,其拓扑结构的精确度和即时性对于确保电力供应的稳定性和经济效益起到了至关重要的作用。在当前阶段,由于低压台区数量庞大,分布广泛且结构复杂等因素导致了传统人工方式下难以高效精确的完成复杂低压台区的拓扑自动识别工作。本项研究的目标是通过采用先进的测量数据技术和计算方法,达到对低压台区的拓扑结构进行自动化识别的目的。本文在充分调研国内外相关研究成果的基础上,以实际工程应用为背景,提出了一种适用于配电自动化系统的低压台区拓扑识别系统设计方案,并进行了具体实现与验证工作。通过对测量数据进行深度的分析和挖掘,该研究能够自动且准确地确定台区内设备的连接方式、电气参数和运行状况,从而成功地构建了一个全面的台区拓扑模型。本文以实际工程应用为例,详细阐述了基于物联网的台区拓扑识别系统设计过程及相关关键技术。本研究课题旨在解决传统台区拓扑识别技术中存在的数据不精确和识别速度缓慢的问题,以期提升台区拓扑识别的准确性和工作效率。在此基础上,结合相关理论知识,开发相应的自动化管理系统,并将其用于实际工程中,取得了较好的效果。此外,这些研究成果也能为台区的实时运行监控、故障预警和调度优化提供强有力的支持,从而进一步提高低压台区电力网络的智能化程度。另外,该成果也有助于丰富配电自动化系统在实际生产生活中的运用手段,促进配电网发展方式转变。此研究课题不仅在理论上具有巨大的价值,而且在实际应用中有着广阔的前景,对于推进智能电网的建设、提高电力网络的运行效率和管理质量都有着至关重要的作用。
1.3 国内外研究现状
在最近的几年中,LVDN的智能拓扑识别已经成为低压配电网研究的焦点。随着大数据时代的兴起,通过利用信号或电气量等数据的内在联系,我们可以更加精确和智能地识别LVDN的物理拓扑。因此,基于电力电子技术及信号处理方法,将高压输电线路与低压电网互联,并结合相关理论设计出一种新的低压配电网综合保护方案,可以在一定程度上提高供电可靠性。为了深入了解低压台区的物理拓扑特性,国内外都对低压台区的潮流算法、拓扑识别以及智能算法进行了广泛的研究和探讨,以下是具体的介绍:
(1)关于低压台区潮流算法的当前研究状况
为了更精确和详尽地展示LVDN的网络拓扑结构,低压配电网的三相潮流计算研究受到了国内外学界的广泛关注。然而,在用于更深入地分析LVDN网络架构中电气量信息的研究方面,仍然存在一些明显的不足。因此有必要对低压配电网中三相潮流计算方法进行深入系统的探讨与研究。三相潮流的计算可以分为两大部分:网架模型和潮流算法。在网架模型中,文献[1]中的Kron简化模型得到了大量文献[2][3][4]的引用和参考。该模型假设每个节点的中性点电压为零,并将中性线阻抗折算后分配到各相线上,从而将原有的单相潮流算法扩展为三相潮流算法。该方法简单实用,可以有效解决配电网中发生故障时由于零序电流而导致的网络解列问题。然而,中性点接地的场景相当复杂,简化的难度也相对较高,同时,中性线的重复接地情况在低压侧线路上是不被允许的。本文对上述两种方法做一比较,分析各自优缺点,得出更为合理有效的计算方法。为了深入了解网络的拓扑结构,目前的研究更多地集中在考虑中性点接地的三相四线模型上。例如,文献[5][19]介绍了一个考虑中性点参数的三相变压器模型,该模型结合了三相三线的中压线路和三相四线的低压线路。该方法可以有效地避免中性点电阻对计算结果的影响,且无需引入中间变量来求解各元件的电容值,便于工程应用。文献[6]采用基于相分量的关联矩阵法对变压器节点的导纳矩阵进行了推导,这种方法适用于三相不对称的计算。但是,对于中压线路,中性点电位不为零的情况下,传统的关联矩阵法就不再适用了。本文针对这一不足,将支路阻抗矩阵引入到配电网系统中,并对其正确性进行验证。文献[7]研究了三相三线或三相四线中低压配电网的不同结构和光伏接入对其的影响,并构建了一个适应中低压配电网的网络模型,但在不接地的情况下,并没有考虑相电压的参考点问题。本文提出一种新的简化方法,将单相系统转换到两相系统并采用改进后的算法求解配电网的阻抗矩阵,从而得到故障时各条馈线上所需补偿电容值以及相应的注入电流大小。在传统的接线方式中,Y型接线采用相电压参考点作为各节点的中性点,而在A型接线中,等值中性点则被用作电压的参考点。由于实际配电网一般是两相接地,因此若将两种连接方式分别应用到同一系统时,可能产生一定程度的计算错误。在文献[8]里,低压部分负荷得到了近似的处理,但这并没有考虑到四线和重复接地的场景,这可能导致较大的计算误差。因此本文基于上述两种情形,分别推导出适用于含三相接地配电网的简化数学模型及相应的计算方法,并给出算例验证其有效性。在潮流算法领域,传统的计算方法包括牛拉法、前推回代法和直接法等,但前推回代法由于采用了等效单相潮流计算方式,已经不再适用于包含源和三相不平衡的潮流计算需求[9]。本文提出一种新的改进后的前推回代潮流计算方法,并通过算例验证其可行性与正确性。文献[10]对DG中的风力发电机、徽型燃汽轮机、光伏电池等多种分布式发电方式的结构特性进行了深入分析,并构建了各种DG模型。然而,这些模型主要采用前推回代法,这使得它们在处理多回路问题时的性能相对较弱。本文提出一种新的基于等值电路的潮流计算方法,即通过对风电场及负荷点电压方程建立数学模型,从而实现有功功率与无功功率之间的相互转化来达到简化计算的目的。文献[11]和文献[12]使用直接法来进行潮流的计算,尽管这种方法能够较为有效地解决PV节点的问题,但其计算过程相对复杂,并且不能完整地求解LVDN的具体数据。在涉及分布式电源的三相潮流分析中,三相的解耦已经变成了一个相当大的挑战。因此在研究分布式电源并网时必须考虑其影响因素,包括负荷特性、线路阻抗以及系统运行状态等方面。为了达到便捷的三相解耦效果,目前大部分的研究成果[13][14]选择了采用正序功率恒定的策略来控制分布式电源。由于这种方法忽略了中性线上发生短路故障时产生的负序电流,使得其无法用于分析含分布式电源的电网三相潮流特性。文献[15]为多源配电网提出了三相潮流的稳态模型,并对正序功率恒定模式进行了优化。然而,它并没有考虑到中性线和接地的问题,也没有对三相进行解耦,这进一步限制了序分量法的应用。因此本文研究了含有分布式电源的三相平衡电网的建模与计算方法。一些文献[16][17][18][20]也使用了二阶锥松弛的方法来简化三相潮流方程。尽管这种方法可以考虑到DG、储能和断路器等设备,但在简化过程中可能忽略了三相四线和接地的因素,这也可能导致无法获得完全精确的电气数据。本文从这一不足出发,提出基于一阶近似线性化方法的三相潮流模型。文献[20]研究了光伏电源接入对电网潮流的作用,并以相电压作为计算变量,构建了中低压配电网络的三相潮流模型。本文则根据系统实际运行状态来确定各元件参数以及相应的初始条件。文献[21]结合了三相三线的中压电路和三相四线的低压电路,并采纳了注入电流的方法。由于注入电流法只需要计算出节点处的有功功率值就可以求解出各支路上的无功出力以及各点之间的耦合系数。文献[22][23][24]都考虑了三相三线和三相四线的情况,提出了一种适用于中低压配电网的混合三相潮流模型,并采用注入电流法列出潮流方程。在此基础上,本文进一步分析了各种不同类型逆变器对配电网潮流的影响以及系统发生短路时,单相负荷及三相接地故障对网络潮流的影响。两者之间的差异在于,前者主要关注的是未接地的逆变电源,而后者则更多地关注各种分布式电源,这两者都是值得我们学习和参考的。
(2)关于AMI数据应用的当前研究状况
随着现代智能电网的建设和智能传感器的广泛应用,AMI系统得到了飞速的发展。电网公司因此积累了大量的数据,达到了数千。为了充分利用这些大数据,并将其潜在的优势应用于电网的运营和管理,国内外的研究者都进行了大量的研究。利用AMI收集到的大量电气数据,众多电力公司都在努力开发实用的数据分析工具(dataanalytics DA)[25],这些工具主要用于电力系统的日常维护、管理以及与用户的互动等领域[26]。在最近的几年中,由于电网公司对AMI的测量数据的需求增加,基于AMI的测量数据应用领域也得到了进一步的拓展,例如拓扑的识别、网架的重组[27]、状态的估计[28][29][30]、需求的响应[31]以及线损的分析[32]等技术。目前,电力领域中关于低压配电网运行优化问题已开展了很多相关研究。在这其中,拓扑识别的应用研究是最为丰富的,文献[33]利用AMI数据提出了一种用于低压配电网线路参数识别的新方法;文献[34]介绍了一种用于识别变压器参数的新方法;本文主要围绕着低压配网的拓扑辨识展开论述。文献[35]和文献[36]主要是为了验证低压配电网拓扑的准确性而提出的方法,而文献[37]则进一步扩展到中压配电网,并介绍了一个两阶段的拓扑识别技术。在低压电网中采用分布式测量方式可以减少对变电站的依赖,同时也提高了可靠性水平。尽管同步相量量测单元(PhasorMeasurementUnit PMU)的测量数据可以被应用,但由于其配置成本和网络拓扑的局限性,它最初可能只被配置在网络的某些节点和支路上,而不是像AMI系统那样广泛分布。
(3)关于含源低压配电网的拓扑识别算法的当前研究状况
电网的拓扑信息构成了电网系统在优化规划、运营维护、控制管理以及台账管理等多个方面工作的基础支撑。在智能电网建设背景下,如何准确地获取和分析电力系统内部各节点之间以及各个元件之间的联系关系,成为了一个亟待解决的问题。低压配电网作为直接面向用电用户的“先锋队”,其拓扑结构信息构成了基础架构的核心,而自动识别这些拓扑结构则是实现配电网智能化发展的基础性步骤。目前国内在低压配网的自动化建设过程中还存在着诸多问题,其中一个重要原因就是没有建立起完善的低压网络拓扑图和相应的拓扑识别系统。因此,国内外的学者对低压配电网的拓扑识别问题表现出浓厚的兴趣。本文从理论研究和实际工程两个角度对低压配网拓扑识别方法进行了探讨。电力网络的拓扑结构主要描述了电气设备(如变压器、用电用户、DG、电线等)之间的物理连接方式[38]。由于电气连接具有一定规律,因而在电力系统运行时,网络往往表现出复杂多样的特性,例如有不同程度的振荡或分叉现象。当电网的拓扑结构发生改变,或者受到测量误差、通讯干扰等因素的影响时,网络拓扑的应用结果可能会出现偏差,这可能导致故障修复不能及时完成,从而降低电网的可靠性。在此背景下,研究如何快速有效地实现低压网络的准确建模及正确进行电气参数计算具有重要意义。为了解决这个问题,国内外的学者们提出了众多的拓扑分析和错误识别方法。这些方法主要应用于输电网络,包括但不限于人工神经网络法、新息图法、图论法、残差法、矩阵法、最小信息损失法、转移潮流法、集合论法和规则法等。针对配电网络,主要包括支路分析法、节点注入法及改进后的节点电流追踪法对传统算法进行修正。对于线路阻抗比R/X≈1的中高压配电网络,文献[39]介绍了一种基于智能终端单元测量信号的拓扑结构识别技术。文献[40]介绍了一种基于PMU的方法,用于配电网潮流雅可比矩阵的鲁棒估计和拓扑识别。这些方法都是利用分布式测量数据对配电网进行拓扑辨识的一种有效手段。文献[41]介绍了一种结合深度神经网络的配电网联系关系识别方法。由于传统变电站测量设备存在着无法进行远程控制和维护,以及其安装成本高等缺点,使得现有的配电网自动化系统很难满足实际需要。然而,与完善的输电网或中高压配电网相比,LVDN的量测体系也在逐步建立和完善。但是,与之相比,量测信息检测单元相对较少,只有智能电表可以广泛安装和使用。因此,国内外的学者都在寻找低压配电网拓扑智能识别的方法。目前国内关于低压配网故障定位方面的研究工作比较多,但是对于低压线路间相互位置关系的分析并不多见,本文针对这一问题进行了探讨。所谓的低压拓扑关系自动识别,是指在不需要人工实地检查的情况下,通过信号或数据等手段,利用特定算法来确定LVDN户变关系、相户关系以及线户关系。低压拓扑关系识别系统具有简单实用、成本低、易于推广的特点,目前已经应用于我国许多地区低压配网系统中。基于国内外的研究进展,低压配电网的拓扑识别方法主要可以划分为信号法、停电检测法、数据标签法以及数据法。其中,停电检测法以其简单易操作的特点成为目前应用最为广泛且研究最多,同时又被证明行之有效的一种识别方法。信号法是一种通过注入特定的电压或电流信号,然后根据网架内相关设备接收和反馈的数据来识别电气设备之间的连接关系的方法。停电检测法则采用了故障定位方法来检测出故障位置。信号法主要分为两大类:一是基于载波通信的识别方法,二是结合载波通信和脉冲电流的识别技术。
1.4 研究方法
(1)重点:
对10kV低压配电网的AMI系统架构有深入的了解:AMI(Advanced Metering Infrastructure)系统架构是低压配电网的一个重要组成部分,了解其结构、功能和数据传输方式是实现低压台区拓扑自动识别的基础。
为了准确地识别10kV低压配电网的拓扑结构,我们需要构建一个基于量测数据的模型,该模型能够准确地反映台区的实际拓扑状况。该模型可以是任意形式,也可以为一种简单而实用的网络模型。该模型必须具备处理多种复杂台区结构的能力,这包括处理设备间的连接方式和电气参数等方面的问题。
(2)难点:
关于量测数据的处理和分析:由于量测数据常常含有噪声和异常值等,如何对这些数据进行有效的预处理、清理和筛选,以提取对拓扑识别有益的信息,成为了一个重要的问题。
关于拓扑识别算法的改进:目前的拓扑识别方法可能不能完全满足低压台区的拓扑识别需求,尤其是在处理大型和复杂的台区结构时。
(3)计划实施的方法:
通过文献回顾和实地考察,我们对低压配电网AMI系统的架构和拓扑识别的当前研究状况以及未来发展方向进行了深入了解。
在数据分析和预处理方面,我们采用了统计学和机器学习等多种手段,对收集到的测量数据进行了深度的分析,并成功地识别和处理了异常数据和噪声。
在处理数据的基础上,我们构建了一个10kV低压配电网的拓扑识别模型,并进行了算法的优化;采用改进粒子群算法对拓扑识别系统进行训练,并将该算法应用于某地区配电网中,得到了正确可行的配网拓扑识别方法。通过比较各种算法的表现,我们选择或优化了适合本研究的拓扑识别技术,从而提高了识别的精确度和工作效率。
在仿真实验和误差分析方面,我们使用仿真软件对所建立的模型进行了全面的验证和测试。通过将仿真结果与实际的拓扑结构进行比较,我们分析了模型误差的来源,并据此提出了相应的改进方案。
1.5课题内容
在电力系统的“发-输-变-配-用”环节中,配电网扮演着至关重要的角色。特别是低压配电网,它是直接服务于广大电力用户的关键部分,其运行状况会直接决定用户的电力使用体验,并进一步影响社会对电网公司这种服务型企业的公众评价。由于低压配电网本身存在着结构复杂、线长面广等特点,使得低压配电网络在实际运行过程中受各种因素的影响较大,导致了线路损耗过大甚至无法供电问题出现。因此,识别低压配电网的拓扑结构是提高其运营和管理效率的关键。在低压配电网中,正确的变-线-相-户拓扑关系对于线损分析、窃电预警、故障排查和需求响应都具有极其重要的意义。本文针对现有技术存在的问题提出了一种新的基于物联网技术的智能配网拓扑识别系统,并在某地区开展应用研究。这个研究课题要求我们深入了解10kv低压配电网AMI的系统结构,熟悉低压台区的设计,构建拓扑识别模型,并对该模型的误差进行分析,以实现基于测量数据的低压拓扑的自动识别设计。
研究课题的具体任务要求:
(1)这个课题要求学生深入了解10kv低压配电网的AMI系统结构,并熟悉低压台区的设计。
(2)具备构建10kV10kv低压配电网络拓扑识别模型的能力
对该模型的误差进行了深入分析;成功实施了一种基于测量数据的低压台区的自动拓扑识别技术。
2 相关理论基础
2.1 AMI简介
进入21世纪,智能电网逐渐显现其重要性,它已经转变为全球在能源、环境和社会可持续发展领域的核心策略,更具体地说,它代表了电网与现代信息技术融合的创新电网体系。智能电网作为未来电力发展的方向之一,必将引领着新一轮技术革命浪潮,并促进整个国民经济快速健康地发展。随着智能电网的建立,电力行业将经历深远的变革,这不仅为电力系统的高效配置和经济安全运行提供了关键支持,同时也将对整个电力产业带来长远的影响。智能电网作为一种全新的电网结构模式,能够有效地解决现有电网存在的问题。智能电网的一个突出特点是电力和信息能够双向流通,这对于构建一个高度自动化且分布广泛的能源交换网络是非常有益的。智能电网可以有效地解决当前电力市场中存在的问题,提高供电可靠性、降低运行成本并减少环境污染。智能电网在其核心特性上与传统电网存在显著差异,因此,深入研究其关键技术显得尤为关键。本文介绍了智能电网的定义及其基本架构,并分析了智能电网面临的挑战和未来发展方向。智能电网主要是由以下四个核心技术模块组成:高级测量系统(advancedmeteringinfrastructure AMI)、高级配电操作(advanceddistributionoperation ADO)、高级输电操作(advancedtransmissionoperation ATO)和高级资产管理(advancedassetmanagement AAM)。其中,高级计量和高级输电技术作为智能电网的重要组成部分之一,对于提高电能质量、降低发电成本具有重大意义。目前,全球范围内正在进行大量与此相关的研究活动,并已经取得了若干成就,例如构建了一套用于评价智能电网性能的模型和方法。在北美地区,AMI被视为智能电网发展的起始步骤,而在我国,AMI也被看作是智能电网建设的核心部分。这篇文章综合了当前国内外研究中受到广泛关注的几个关键领域,并针对我国的具体环境提出了若干建设性的建议,旨在为该领域的研究人员提供有用的参考资料。AMI构成了一个综合性的网络与系统,其主要功能是对用户的电力使用信息进行测量、搜集、存储、分析以及应用。其目的是为了帮助电力企业优化调度、提高能源利用率和降低线损,实现电能质量改善及安全生产目标。该系统是由安装在用户端的智能电表(smartmeter SM)、电力公司内部的量测数据管理系统(meterdatamanagementsystem MDMS)、用户住宅内的用户户内网络(homeareanetwork HAN)以及连接这些网络的通信系统所组成的。它可以对用户每天产生的大量电量进行统计,并根据这些数据来预测用户未来一年的用电量情况。该系统能够数字化地记录用户的所有电力使用参数,并可以通过互联网或无线方式将其发送给用户或其他第三方。此外,它还为用户提供了相关的信息查询功能,确保电力资源得到最佳的使用。该系统采用了一种新型技术——物联网,可以对整个电力系统进行全面监控。这个系统不仅仅是一个用于记录用户每月能量消耗的工具,它还整合了实时或近似实时的电力消费、电力需求、电压、电流以及其他相关信息的硬件和软件采集,而不仅仅是一个简单的电表读数。
AMI利用其双向通信系统和智能电表,该电表能够记录用户的详细负荷数据,可以根据预定的时间或实时获取带有时标的分时段或实时(或准实时)的多种计量值,从而提供覆盖配电网系统范围的测量信息。此外,它还能对线路进行监测,以保证线路安全运行以及供电可靠性。这批数据被应用于配电管理系统,用于分析和计算各种电力需求,并为制定经济合理的运行计划奠定了坚实的基础。同时,还能帮助调度人员了解各变电站、发电厂以及用户之间的联系及关系。作为AMI的组成部分,智能电表是实现上述功能的核心环节。本文介绍了一种新型的智能电能表–多功能电子表。该设备有能力在各种电力使用场景下,及时并准确地记录电能消耗等相关数据,并将其展示在显示屏上。目前市场上出售的电表种类繁多,但大多只能测量某一种或几种类型的电量。传统机械式电表的主要功能是通过增加电量来记录用户的总电量,因此电力公司在很长一段时间内都在使用这种电表来计量用户的电量。由于机械式电表存在着很多问题和弊端,因而逐渐被淘汰。伴随着电力电子技术和计算机、微电子等领域的持续进步,尤其是数字信号处理技术的飞速发展,基于模拟电路的电表已经不能满足现代电网在电能质量管理和控制方面的需求。于是,人们开始寻找一种新的方法来取代现有的电子式电能表。在过去二十多年的时间里,数字式电表得到了广泛的使用,但是,大多数这类电表仍然主要依赖电量的累积来进行数据的收集。目前,国内的大多数电力企业仍然采用人工抄表法来进行电费计算。不管是基于机械的电表还是基于非智能数字的电表,它们的测量数据都依赖于手工采集,并且这些数据都是通过手工抄表的方式瞬时获得的。这种传统的抄表方法不仅效率低下,而且容易出现错误。这些电能表由于无法自动捕获实时的负荷数据,这导致了许多电力市场的交易活动无法顺利进行。为了解决上述问题,我们可以将这些传统电表改造成为具有智能化的电表。在AMI软件环境下,智能电表作为一种可编程工具,具备了包括电能消费记录在内的多样化功能。智能电表除了具有传统电能表所能达到的所有功能外,还可以根据实际情况对电能表的运行状态和工作模式做出调整,以适应不同用户需求的变化。这些特性让智能电表有能力提供更优质的电力服务。智能电表具有很高的灵活性,可以根据用户需求改变其运行方式并为用户提供方便。智能电表不仅拥有定时功能(例如15min 30min 1h),还能实时捕获用户的即时或几乎即时的详细负荷信息,这为智能电网用户端的大数据分析提供了稳固的支撑。针对目前智能电表存在的问题,提出了基于云计算技术的智能电表解决方案。通过对智能电表内部硬件和软件架构的优化,以及运用分布式控制框架和模块化技术,该智能电表得以提供一种灵活而可靠的电力供应方案。同时,该智能电表具有良好的可靠性和安全性。此外,这款智能电表还配备了内置的通信模块,可以在双向通信系统中与数据中心的终端设备进行数据交换。另外,智能电表还具有电能质量监测功能,可以有效地防止谐波污染。智能电表也为我们提供了一个基于电力市场的自动定价策略以及优化的调度方法。另外,智能电表也可以用于电能质量监测和分析。这款拥有双向通信功能的智能电表不仅能够实时读取和验证用户的用电信息,还支持远程连接、开关、设备干扰和电压越界检测。该电表具有丰富的电量计算工具,可以实现各种电能计量模型的快速构建。除此之外,该系统还具备分时电价、实时电价以及需求侧管理等多项功能。
2.2低压台区的构造
低压配电台区由变压器、配电房/JP柜(第一级)的断路器、智能无功补偿装置、分支箱的断路器(第二级)和终端用户表箱(第三级)组成,其典型的拓扑结构如图1展示。低压台区采用多芯模组化智能塑壳断路器与低压成套开关设备进行配合使用。用电信息采集系统的主站利用模组化融合终端向多芯模组化电能表发送特征电流的指令。然后,通过计量箱、分支箱和变压器侧的各级智能塑壳断路器以及模组化融合终端,对特征电流信号进行采样和检测,从而实现台区“变-线-箱-表”拓扑关系和相位的自动识别。低压台区具有分布广、负荷种类多等特点,在实际应用中存在诸多问题。低压台区的建设是一项涉及多方面设计和思考的综合性工程项目,其目的是确保能够为用户提供安全、可靠和高效的电力供应。
图1 低压配电台区典型拓扑结构
2.3LVDN拓扑关系自动识别技术
数据分析法是一种依赖于高级测量体系的信息分析方法,它从大数据挖掘的视角出发,通过对低压网络中各个负荷节点在长时间尺度上的电压、电流等电气量的时空特性进行分析,从而实现LVDN拓扑关系的自动识别。本文主要研究了在海量历史数据基础上如何对低压电网进行有效辨识和识别。这是一种识别基于数据驱动的电能表与LVDN一级分支线(即LVDN首端出线)之间归属关系的方法,简称为“线户关系。该方法采用主成分分析法对采集到的海量配电网运行参数进行降维处理,并提取反映不同类型负荷特征的综合变量作为特征向量,利用支持向量机分类器完成对线户关系识别分类。LVDN负荷节点电压特性从空间、时间和时空三个维度进行了深入分析。以典型配电网为背景,对其进行仿真实验验证。基于此,考虑到用户电能表之间以及用户电能表与配电变压器(简称“配变”)低压各相母线电压曲线的相关性,我们提出了一种新的电能表聚类技术;并根据各区域内电流分布特点和线路阻抗情况,建立了配电网台区电能损耗计算数学模型。进一步地,我们构建了一个用于识别LVDN线户关系的二次规划模型。
基尔霍夫电流定律明确表示,进入特定节点的所有电流之和与离开该节点的所有电流之和相等。当从一个线路到另一线路时,各相进线首端的电压也都是相同的。因此,在LVDN系统中,无论何时,某一相出线的首端节点流出的有功电流值始终是该相线上所有电能表流入有功电流值的总和,即
在这个公式里,Itρ代表t时刻配变低压侧一级分支线(也称为“出线”)ρ在其首端流出的有功电流的具体数值;在每个采样周期内,当电压或电流超过一定值时,则将该时间作为采集时刻。β={1 2 … T}代表的是采集的时间点集合;ψρ代表了配变低压侧出线ρ上的所有电能表的集合;It b代表配变低压侧出线ρ上的第b块电能表在t时刻的有功电流值,这是通过将电能表上记录的电流值与功率因数相乘得出的;L代表低压侧的所有相出线集合,如果LVDN中存在e回出线,那么L={A1 A2 … Ae B1 B2 … Be C1 C2 … Ce}。
在真实的配电网络环境下,由于电能表的测量误差和电流传输中可能出现的漏电流等因素,该公式可能并不完全适用。因此,可将三相三线制下各负荷点电压及各相线路末端无功电流作为一个整体来分析计算。在这种情况下,某一出线的首端有功电流与该相线上所有电能表流入的有功电流值之间存在明确的关联:
在这个公式里,ξtρ代表了在t时刻LVDN出线ρ上电能表的测量误差,以及电流传输过程中漏电流造成的误差总和。将每个类分别与相应类内其他组进行比较得出各自的分类结果并作为最终归类结果。在电能表聚类集合γ2中,相同类别的电能表具有相同的相线,因此可以用上述公式计算出的类别电流Ig clu(t)来替代单独的电能表电流。将不同种类电能表间的相互关联作用考虑在内,利用最大似然估计方法进行分类处理,获得了各类别相对于类线所对应的电表类型及相应的电量信息。进一步地,为了更准确地识别LVDN的线户关系,我们引入了0-1变量x来描述各个类别之间的相线连接。如果类别g是待识别LVDN出线ρ,那么xg ρ=1;反之,xg ρ=0。根据此定义可以将所有类型的线户间进行分类,从而实现不同电压等级线户间相互区分的目的。在这种情况下,LVDN线户关系的识别问题被转化为一个0-1变量的解决问题,并为X的求解建立了以下的优化模型:
在这个公式里:g=1 2 ⋯ E。根据原线性方程组求解过程中未考虑到观测值对原始方程影响程度不同这一特点,建立了一种新的线性回归数学模型。上述公式描述了一个0-1整数的二次规划问题。为了增强问题的可解性,我们将该公式中的整数变量简化为连续变量,即将xu ρ∈{0 1}重新定义为xu ρ∈[0 1][21]。利用所建立的新模型对某市供电公司台区居民用户用电信息进行分析处理,并以某一典型区域为例验证了此方法的有效性与实用性。从这个角度看,它被转化为一个二次规划的问题。由于采用了上述方法,使得原优化过程得以简化。在这个模型里,利用二次规划问题得到的X矩阵元素会包含小数,而数据采集的时刻T越多,得到的小数值就越接近0或1,从而使得识别结果更为精确[22]。为了清晰地理解户变关系和户相关系,有必要将X矩阵中的小数值转换为0-1的数值,即
根据上面的分析,我们可以确定不同类别的电能表之间的相线连接关系,而在同一类别下,电能表的相线是相同的。因此,我们可以根据不同类别的相线连接关系来确定LVDN的所有用户之间的线户关系。在我们提出的方法中,用户聚类模块不仅有助于解决空房用户的线户识别难题,还能降低线户识别算法对数据长度的依赖。)我们提出的方法在特定的电能表计量误差范围内展现出了极高的识别精度,而且电流数据的长度越长,电能表的识别错误率就越低。通过深入研究电气数据在长时间尺度上的变动模式,我们能够自动地识别LVDN线户之间的关系。
2.4 配网拓扑连接校验原理
2.4.1数据预处理方法
鉴于AMI量测系统所拥有的特殊性能和功能,如果测量结果出现偏差,那么收集到的数据很可能包含不准确的信息。这样的错误有可能引发不精确或者完全无效的后果,极端情况下可能导致严重的影响。因此,对收集到的不精确数据进行筛选和修正是极其重要的。目前对于不准确数据的处理主要依靠人工方式,但由于人力成本高、效率低等原因,很难满足大规模应用的要求。为了解决这个问题,本研究提出了一种错误检测算法,该算法基于最小二乘支持向量机回归模型。该方法通过建立一个线性回归方程来实现误差校正过程,从而得到正确的测试值。这个方法的核心思想是:将每一项测量数据与其平均值进行比较,如果与平均值之间的差异超过了一个特定的阈值,那么这些数据可能会被认为是不准确的,并需要进行相应的排除和修正。由于测量误差在很大程度上依赖于测量过程中出现的随机因素以及其他一些非系统误差,所以我们通常采用均值漂移等统计技术来估计测量误差。这篇文章介绍了一种全新的异常检测算法,该算法基于方差比进行设计。该算法通过引入标准差因子,在剔除掉大量有意义但又不能作为正确结果的测量数据之后,能够得到比较可靠的结果。更明确地讲,对于M个AMI的有功测量Pi(j=1 2…M),我们可以采用特定的数学公式来确定第i个测量Pi与其平均值的偏差百分比pi。在p>g的场景中,我们可以剔除明显的误差数据,并采用均值F来替代此数值。这样就能在保证一定准确率的同时,减少对噪声数据和非高斯性干扰的依赖。本研究提出了一种统计推断算法,该算法基于误差分布特征量,能够从多个角度判断是否存在虚假的测量记录。该方法还可以用来估计未知参数或者对测量结果进行修正以达到预期的效果。这篇文章通过详细的计算实例展示了该方法在消除大量不真实测量数据方面的有效性。此外,还对如何提高电网运行可靠性进行了初步探讨,给出了相应的对策和措施。在文章的结尾部分,我们对现有的研究成果进行了总结和分析,并指出了未来需要进一步探索的问题,同时也给出了未来的研究方向和建议。由于采用了最小二乘估计和贝叶斯理论相结合的方式对负荷进行建模,从而使得本论文所提出的分析方法更加合理、可靠且具有更好的实用性。需要特别指出的是,在实际操作中,负荷的每小时波动相对较小,因此在本次研究中,M值可以选择为4。由于实际系统往往会出现多种扰动因素并存的情况,所以要充分考虑各种扰动因素对于负荷特性所产生的影响,从而建立更为准确合理的负荷预测模型。在文章的结尾部分,我们对目前在国内外广泛使用的基于统计模型的电力系统短期预测技术进行了深入的比较和分析,并对其各自的长处和短处进行了总结。对于具有一定非线性特征的系统,采用传统统计模型往往难以取得良好的结果。此外,鉴于不同AMI的测量数据在时间维度上存在不同步现象,有必要对经过筛选和修正的测量数据进行更为深入的分析和处理。这也就要求我们必须要采用更为合理、有效的方法来建立相应的统计模型。本研究介绍了一种创新的基于最小二乘估计的统计模型修正方法,此方法可以有效地减少误差的累积,从而增强预测的准确性。该算法通过计算每个时刻各个测点的均值与方差来确定各测点之间的相关性程度,从而达到减小测量误差以改善系统整体性能的目的。这种处理方法的核心思想是:采用相邻时标的数值进行平均处理,作为其近似同步的参照值。
2.4.2 拓扑关系校验原理
为了更深入地阐述拓扑连接关系的验证原则,我们采用了图2.1展示的配电网络,并观察到实际低压配电网的AMI配置与图2.1有着高度的相似性。因此,提出用图论中的最短路径法进行配变低压侧接线方案选择的新思路。本研究以特定地区的配电网络为案例,详细介绍了这一方法。一、引言配电系统中的低压断路器是保证整个配电系统可靠性及安全性的重要装置之一。如图2.1展示的那样,配电网络是由一个配电变压器TX和两条与其连接的馈线构成的。每一条馈线都与不同的负荷Mj(j=1 2…13)相连接,并且每一种负荷都配备了智能电表。根据这些数据可以确定各个负荷之间是否存在连接关系以及连接方式。在图示中,我们选择母线上所有线路的长度总和,即各点到变电站的距离,作为计算的量度,然后将这些计算数据转化为相应的图形,从而获得图中所需的相关信息。由于馈线中存在着许多具有相同性质的元件或部件,因此需要对这些元件进行编号来确定其所在的位置及相互关系。在此情境下,PCj(j=1 2…13)扮演着连接负荷支路与馈线的核心节点角色,并被明确标识为耦合节点。由于负荷分布不均匀等原因,使得电网中存在大量具有多个分支且相互独立的用户,而每个分支又有各自独立的控制方式和保护方案。在配电网出现故障的情况下,各个分支线路的电压下降都会发生变化,这进一步会对整个配网系统的稳定运行和可靠性造成影响。为了使这种现象得以改善,就必须对其进行准确地定位,因此需要有一个可靠的数学模型来描述配电网的实际情况。如图2.1展示的配电网络拓扑的可观测性是这样的:只有在负荷Mj配备了AMI测量设备时,该负荷的拓扑连接关系才能被观测到;(2)在相同的配电变压器内,所有的负荷都是通过T接线与馈线相连的,而这两个连接点的交汇点被称为耦合节点;(3)在所有的馈线下部,我们并没有发现无功补偿装置,这意味着从上游至下游,馈线上的电压节点都显示出逐渐下降的模式。这篇文章的主要分析依据是拓扑结构是可以被观察到的。
图2.1 所示的网络
基于图2.1所示的网络拓扑结构并结合欧姆定律,对于任一时刻,耦合节点PCj处的电压为:
在这个公式里,j是用于标识测量仪器的标识码;Uj t和Ij t是用来表示测量仪i测量到的该点Mj负荷的电压和电流量;Zs j代表的是从测量点j至耦合点PC的阻抗值。在实际工作中应尽量使用较高精度的电阻测试仪。如果难以获得电流量的测量数据,那么可以直接使用短路电流进行验证,并将其作为一个参照标准。若得到了相应的数据和结果,则需要对其做进一步分析,以确定该测量方法是否适用。如果无法确定当前的阻抗值,那么可以根据线路的规格参数来进行计算;在电力系统发生故障后,为了使继电保护装置迅速动作,必须保证输电线路能够可靠运行,而这对线路阻抗有很高要求。只要测量的准确性达到了系统的标准,这种方法就可以在实际工程中得到应用。因此,本文提出一种利用电力网络模型计算输电线路阻抗参数的新方法。如果不能确定线路的具体规格参数,那么就无法通过数学计算来准确地确定线路的阻抗参数。对于不同类型的变压器,其等值电路也不相同,因此在对变压器进行研究之前需要根据相关标准对其进行测试以获取精确数据。鉴于实际线路的阻抗参数相对偏小,我们选择用负荷节点电压的实际测量数据来替换相应的耦合节点电压。如果目前的电流量测量方法不能给出精确的数据,那么我们可以通过将功率测量值与电压测量值进行对比来做出决策:
在这个公式里,Pj t和Qj t代表的是负荷M;关于有功和无功功率的测量数据。
根据式和式,我们可以计算出各个负荷M的值;由这些量可以计算出系统各点之间的功率传输。与之相匹配的是耦合节点PC;考虑到耦合节点的电压值