东南大学齿轮箱故障诊断(Python代码,MSCNN结合LSTM结合注意力机制模型,代码有注释)

运行效果:东南大学齿轮箱故障诊断(Python代码,MSCNN结合LSTM结合注意力机制模型,代码有注释)_哔哩哔哩_bilibili

运行代码要求:

代码运行环境要求:Keras版本>=2.4.0,python版本>=3.6.0

1.东南大学采集数据平台:

图片

 数据

该数据集包含2个子数据集,包括轴承数据和齿轮数据,这两个子数据集都是在传动系动力学模拟器(DDS)上获取的。(第一个文件夹是轴承数据,第二个文件夹是齿轮数据,本次是针对齿轮数据进行故障诊断)

有两种工况,转速-负载配置设置为20-0和30-2。

在每个文件中,有8行信号,分别表示:x、y和z三个方向上行星齿轮箱的1-电机振动、2、3、4-振动、5-电机扭矩、x、y和z三个方向上并联齿轮箱的6、7、8-振动。第2、3、4列信号最有效。

这次实验使用第2列数据。

每种工况下有4种故障状态和1种正常状态。

 code20_0.py是20_0工况下故诊断代码

 code30_2.py是30_2工况下故诊断代码

实验结果

20工况

 

 

 30_2工况下

对代码感兴趣的可以关注最后一行

​​import os
import pandas as pd
from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif']=['simhei'] # 添加中文字体为黑体
plt.rcParams['axes.unicode_minus'] =False
Chipped_20_0=pd.read_csv('Chipped_20_0.csv').iloc[17:1048576,:]
Health_20_0=pd.read_csv('Health_20_0.csv').iloc[17:1048576,:]
Miss_20_0=pd.read_csv('Miss_20_0.csv').iloc[17:1048576,:]
Root_20_0=pd.read_csv('Root_20_0.csv').iloc[17:1048576,:]
Surface_20_0=pd.read_csv('Surface_20_0.csv').iloc[17:1048576,:]
#代码及数据集https://mbd.pub/o/bread/ZJyblp1q

  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
下面是一个使用网格搜索优化CNN-LSTM-注意力机制模型参数的Python代码示例: ```python from sklearn.model_selection import GridSearchCV from keras.wrappers.scikit_learn import KerasClassifier from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, LSTM, Dense, Flatten, Attention # 定义CNN-LSTM-注意力机制模型 def create_model(filters, kernel_size, pool_size, lstm_units, attention_units, learning_rate): model = Sequential() model.add(Conv2D(filters=filters, kernel_size=kernel_size, activation='relu', input_shape=(width, height, channels))) model.add(MaxPooling2D(pool_size=pool_size)) model.add(Flatten()) model.add(LSTM(units=lstm_units, return_sequences=True)) model.add(Attention(units=attention_units)) model.add(Dense(units=1, activation='sigmoid')) model.compile(optimizer=Adam(learning_rate=learning_rate), loss='binary_crossentropy', metrics=['accuracy']) return model # 创建Keras分类器 model = KerasClassifier(build_fn=create_model) # 定义参数网格 param_grid = { 'filters': [32, 64], 'kernel_size': [(3, 3), (5, 5)], 'pool_size': [(2, 2), (3, 3)], 'lstm_units': [64, 128], 'attention_units': [32, 64], 'learning_rate': [0.001, 0.01] } # 创建网格搜索对象 grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) # 执行网格搜索 grid_search_result = grid_search.fit(X_train, y_train) # 输出最佳参数组合和评分 print("Best Parameters: ", grid_search_result.best_params_) print("Best Score: ", grid_search_result.best_score_) # 使用最佳参数组合训练模型并进行最终评估 best_model = grid_search_result.best_estimator_ best_model.fit(X_train, y_train) test_loss, test_accuracy = best_model.evaluate(X_test, y_test) print("Test Loss: ", test_loss) print("Test Accuracy: ", test_accuracy) ``` 在这个示例中,我们在CNN-LSTM模型的基础上添加了注意力机制注意力机制可以帮助模型更好地关注输入的关键特征。 我们首先定义了一个函数`create_model`来创建包含注意力机制CNN-LSTM模型,并使用`KerasClassifier`将其包装为可用于网格搜索的Keras分类器。 然后,我们定义了参数网格`param_grid`,其中包含了我们想要优化的参数范围,包括注意力机制的单元数量。 接下来,我们创建了一个`GridSearchCV`对象,并传入模型、参数网格和交叉验证的折数。 最后,我们调用`fit`方法来执行网格搜索。执行完毕后,我们可以通过`best_params_`属性获取最佳参数组合,并通过`best_score_`属性获取最佳模型的评分。 最后,我们使用最佳参数组合训练最佳模型,并在测试集上进行最终评估。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习的奋斗者

你的鼓励是我努力的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值