东南大学齿轮箱数据集

文章介绍了东南大学的一个试验平台,包含电机、控制器和齿轮箱等组件,以及相关数据集,数据集分为轴承和齿轮箱故障两类,每类有多种故障类型和工况。数据以CSV格式存储,采样率为5120Hz,提供了MATLAB代码自动读取数据。数据可用于故障诊断和迁移学习研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、试验平台

       如上图所示,该试验台由电机、电机控制器、行星齿轮箱、减速齿轮箱、刹车和刹车控制器。本人(冷漠)从东南大学已毕业的学位论文里面找到了相似的试验台,机构的示意图如下所示:

2、数据集组成

    该数据集主要分为轴承数据集齿轮箱数据集,每个故障类型均对应这个两种工况(转速20Hz(1200rpm)-负载0V(0Nm) 和转速30Hz(1800rpm)-负载2V(7.32Nm))分别对应着gearset和bearingset文件夹,具体数据集说明如下:

    ★轴承数据集(5种类型)

           滚子故障(Ball fault)

           内圈故障(Inner ring fault)

           外圈故障(Outer ring fault)

          复合故障(Combination fault on both inner ring and outer ring)

           正常运行(Health woring state)

     ★齿轮数据集(5种类型,):

            缺损(Chipped tooth,齿轮上有裂纹)

            断齿(Missing tooth)

            在齿轮根部的裂纹(Root fault)

            齿面磨损(Surface fault)

            正常运行(Health working state)

3、数据说明

       ⚪每个故障类型的一种工况单独存储在一个CSV文件中,文件名字清楚的标识了类型和工况。

       ⚪每个CSV文件均有一些配置信息。这些配置信息,作者没有进行详细描述,所以冷漠也不太清楚,欢迎指导的朋友进行评论探讨。

       ⚪一共有8个通道信号,对应着数据的8列,具体如下:第1列电机振动信号;第2、3、4列分别对应行星齿轮x,y和z三个方向的振动信号;第5列对应着电机扭矩;第6、7、8列分别对应着减速器x,y和z三个方向的振动信号。

        ⚪采样频率是5120Hz(基于迁移学习的旋转机械故障诊断方法研究 陈超  学位论文中提供)。

        ⚪该数据集仅可以用来做智能诊断和迁移学习的相关内容,并未提供相关轴承型号,故障齿轮安装位置等。

 4、数据读取

       为了方便大家操作,本人(冷漠)编写了相关matlab代码,可实现所有数据的自动读取,具体文件见附件。同时,提供了最终提取数据的结果(附件的data.mat文件)。data.mat中存放着所有类型的数据,每个数据均有8列,对应着东南大学提供的excel。

        上述代码在matlab2020b上测试通过!

5、附件

东南大学齿轮箱数据集

kvfc

内容简介:

1、所有原始数据集(gearset文件夹和bearingset文件夹)

2、自动读取CSV文件的matlab代码文件(main.m可执行脚本,sort_nat.m函数)

3、已保存数据文件(data.mat)。

4、相关参考资料。包括与这个数据集相关的SCI论文和学位论文,供大家参考。

关注公众号“故障诊断与寿命预测工具箱”,每天进步一点点。

### 关于东南大学齿轮箱数据集的Python使用方法 对于东南大学齿轮箱数据集,可以利用多种Python库来进行数据分析和预处理。该数据集通常用于机械故障诊断研究,特别是针对齿轮箱运行状态监测以及早期故障识别。 #### 加载并探索数据集 为了加载此类型的数据集,推荐先下载对应的文件到本地环境,并通过`pandas`读取CSV或其他格式文档中的时间序列信号: ```python import pandas as pd # 假设已知路径为 'path_to_dataset' data = pd.read_csv('path_to_dataset', header=None) print(data.head()) # 查看前几行记录了解整体结构 ``` #### 数据可视化 接着可以通过绘制图表的方式直观感受振动波形特征,这有助于后续建模过程中的特征工程设计: ```python import matplotlib.pyplot as plt plt.figure(figsize=(10, 6)) plt.plot(data.iloc[:, 0]) # 绘制首列作为示例 plt.title('Vibration Signal') plt.xlabel('Sample Index') plt.ylabel('Amplitude') plt.show() ``` #### 特征提取与转换 考虑到原始采样频率可能较高,在实际应用中往往需要降维简化计算复杂度。这里介绍一种简单的方法——快速傅里叶变换(FFT),它能够将时域内的离散样本映射至频谱空间表示形式: ```python from scipy.fft import fft def compute_fft(signal): N = len(signal) T = 1.0 / 8000 # 设定合适的采样间隔 yf = fft(signal) xf = np.linspace(0.0, 1.0/(2.0*T), N//2) return xf, abs(yf[:N//2]) xf, spectrum = compute_fft(data.iloc[:, 0].values) plt.semilogy(xf, spectrum) plt.grid() plt.title('Frequency Spectrum of Vibration Signal') plt.xlabel('Frequency (Hz)') plt.ylabel('|Amplitude|') plt.show() ``` 上述操作展示了如何初步导入、观察及加工来自东南大学发布的齿轮箱实验平台所采集的时间序列资料[^2]。这些步骤构成了进一步深入挖掘潜在规律的基础框架。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值