《电磁学》第十六章电磁感应

以下是《电磁学》第十六章电磁感应的常见内容:

16.1法拉第电磁感应定律

  • 电磁感应现象:当穿过一个闭合导体回路所包围的面积内的磁通量发生变化时(不论这种变化是由什么原因引起的),在导体回路中就有电流产生,这种现象称为电磁感应现象。回路中所产生的电流称为感应电流,相应的电动势则称为感应电动势 。
  • 磁通量:磁通量 Φ = B S cos ⁡ θ \varPhi =BS\cos\theta Φ=BScosθ,其中 B B B是磁感应强度, S S S是回路面积, θ \theta θ B B B S S S法线方向的夹角。
  • 法拉第电磁感应定律:闭合回路中感应电动势的大小与穿过回路的磁通量的变化率成正比,即 ε = − N Δ Φ Δ t \varepsilon = -N\frac{\Delta\varPhi}{\Delta t} ε=NΔtΔΦ,其中 ε \varepsilon ε是感应电动势, N N N是线圈匝数。公式中的负号反映了感应电动势的方向总是阻碍磁通量的变化,这就是楞次定律的体现。

16.2动生电动势

  • 动生电动势的产生:当导体在磁场中做切割磁感线运动时,导体中的自由电子会受到洛伦兹力的作用而发生定向移动,从而在导体两端产生电动势,这种电动势称为动生电动势。
  • 动生电动势的计算:对于一段长度为 L L L的导体,以速度 v v v在磁感应强度为 B B B的磁场中做垂直切割磁感线运动时,产生的动生电动势 ε = B L v \varepsilon = BLv ε=BLv。如果导体运动方向与磁感线方向不垂直,夹角为 θ \theta θ,则 ε = B L v sin ⁡ θ \varepsilon = BLv\sin\theta ε=BLvsinθ

16.3感生电动势

  • 感生电动势的产生:当穿过导体回路的磁场发生变化时,即使导体回路不动,在回路中也会产生感应电动势,这种电动势称为感生电动势。
  • 感生电场:变化的磁场会在周围空间激发一种电场,称为感生电场。感生电场对电荷有力的作用,从而产生感生电动势。感生电场的电场线是闭合曲线,其环流满足 ∮ L E ⃗ 感 ⋅ d l ⃗ = − Δ Φ Δ t \oint_{L}\vec{E}_{感}\cdot d\vec{l}=-\frac{\Delta\varPhi}{\Delta t} LE dl =ΔtΔΦ

16.4自感和互感

  • 自感现象:当一个线圈中的电流发生变化时,它所产生的磁场也会发生变化,从而在线圈自身中产生感应电动势,这种现象称为自感现象,所产生的电动势称为自感电动势。
  • 自感系数:自感电动势 ε L = − L Δ I Δ t \varepsilon_{L}=-L\frac{\Delta I}{\Delta t} εL=LΔtΔI,其中 L L L称为自感系数,它与线圈的匝数、形状、尺寸以及周围介质的磁导率等因素有关。自感系数的单位是亨利( H H H)。
  • 互感现象:两个相互靠近的线圈,当一个线圈中的电流发生变化时,会在另一个线圈中产生感应电动势,这种现象称为互感现象,所产生的电动势称为互感电动势。
  • 互感系数:互感电动势 ε 21 = − M Δ I 1 Δ t \varepsilon_{21}=-M\frac{\Delta I_{1}}{\Delta t} ε21=MΔtΔI1 ε 12 = − M Δ I 2 Δ t \varepsilon_{12}=-M\frac{\Delta I_{2}}{\Delta t} ε12=MΔtΔI2,其中 M M M称为互感系数,它与两个线圈的匝数、形状、尺寸、相对位置以及周围介质的磁导率等因素有关。互感系数的单位也是亨利( H H H)。

16.5磁场的能量

  • 自感磁能:当线圈中通有电流时,线圈中会储存磁场能量。对于一个自感系数为 L L L、电流为 I I I的线圈,其储存的磁场能量为 W L = 1 2 L I 2 W_{L}=\frac{1}{2}LI^{2} WL=21LI2
  • 磁场能量密度:磁场能量分布在磁场所在的空间中,磁场能量密度 w m = 1 2 B 2 μ w_{m}=\frac{1}{2}\frac{B^{2}}{\mu} wm=21μB2,其中 B B B是磁感应强度, μ \mu μ是磁导率。对于一个体积为 V V V的磁场区域,其储存的磁场能量为 W m = ∫ V w m d V W_{m}=\int_{V}w_{m}dV Wm=VwmdV.

16.6位移电流

  • 位移电流的概念:位移电流是麦克斯韦为了解释变化电场产生磁场而引入的一个重要概念。位移电流密度 J ⃗ d = ∂ D ⃗ ∂ t \vec{J}_{d}=\frac{\partial\vec{D}}{\partial t} J d=tD ,其中 D ⃗ \vec{D} D 是电位移矢量,位移电流 I d = ∫ S J ⃗ d ⋅ d S ⃗ = d Φ D d t I_{d}=\int_{S}\vec{J}_{d}\cdot d\vec{S}=\frac{d\varPhi_{D}}{dt} Id=SJ ddS =dtdΦD Φ D \varPhi_{D} ΦD是电位移通量。
  • 全电流定律:在包含有电容的电路中,传导电流不连续,但引入位移电流后,全电流 I 全 = I 传 + I d I_{全}=I_{传}+I_{d} I=I+Id是连续的,并且满足安培环路定理 ∮ L H ⃗ ⋅ d l ⃗ = I 全 \oint_{L}\vec{H}\cdot d\vec{l}=I_{全} LH dl =I

16.7麦克斯韦方程组

  • 麦克斯韦方程组的积分形式
    • ∮ S D ⃗ ⋅ d S ⃗ = ∑ i q i \oint_{S}\vec{D}\cdot d\vec{S}=\sum_{i}q_{i} SD dS =iqi,说明电场是有源场,电荷是电场的源。
    • ∮ L E ⃗ ⋅ d l ⃗ = − ∂ Φ B ∂ t \oint_{L}\vec{E}\cdot d\vec{l}=-\frac{\partial\varPhi_{B}}{\partial t} LE dl =tΦB,表明变化的磁场产生电场。
    • ∮ S B ⃗ ⋅ d S ⃗ = 0 \oint_{S}\vec{B}\cdot d\vec{S}=0 SB dS =0,说明磁场是无源场,磁感线是闭合曲线。
    • ∮ L H ⃗ ⋅ d l ⃗ = I 传 + ∂ Φ D ∂ t \oint_{L}\vec{H}\cdot d\vec{l}=I_{传}+\frac{\partial\varPhi_{D}}{\partial t} LH dl =I+tΦD,表示传导电流和位移电流都能产生磁场。
  • 麦克斯韦方程组的物理意义:麦克斯韦方程组全面地总结了电场和磁场的基本性质以及它们之间的相互关系,是经典电磁学的基本方程,预言了电磁波的存在。

16.8电磁波

  • 电磁波的产生:变化的电场产生磁场,变化的磁场又产生电场,这样交替产生的电磁场由近及远地传播就形成了电磁波。
  • 电磁波的性质
    • 电磁波是横波, E ⃗ \vec{E} E B ⃗ \vec{B} B v ⃗ \vec{v} v 三者相互垂直,且满足 v ⃗ = E ⃗ × B ⃗ μ 0 ε 0 \vec{v}=\frac{\vec{E}\times\vec{B}}{\mu_{0}\varepsilon_{0}} v =μ0ε0E ×B ,其中 μ 0 \mu_{0} μ0是真空磁导率, ε 0 \varepsilon_{0} ε0是真空介电常数,电磁波在真空中的传播速度 v = 1 μ 0 ε 0 = c v=\frac{1}{\sqrt{\mu_{0}\varepsilon_{0}}}=c v=μ0ε0 1=c c c c是真空中的光速。
    • 电磁波具有波的一切特性,如反射、折射、干涉、衍射等,其波长 λ \lambda λ、频率 f f f和波速 v v v之间满足 v = f λ v = f\lambda v=fλ
    • 电磁波具有能量,其能量密度 w = w e + w m = 1 2 ε 0 E 2 + 1 2 B 2 μ 0 w = w_{e}+w_{m}=\frac{1}{2}\varepsilon_{0}E^{2}+\frac{1}{2}\frac{B^{2}}{\mu_{0}} w=we+wm=21ε0E2+21μ0B2,能流密度矢量 S ⃗ = E ⃗ × H ⃗ \vec{S}=\vec{E}\times\vec{H} S =E ×H ,也称为坡印廷矢量,表示单位时间内通过垂直于传播方向单位面积的电磁能量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请向我看齐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值