《自动控制原理》第一章 自动控制的一般概念


以下是对第一章各小节内容的详细解释:

1-1自动控制的基本原理与方式

  • 反馈控制方式
    • 原理:反馈控制是将系统的输出量通过一定的方式(如传感器)引回到输入端,与输入量进行比较,根据比较后的偏差信号来产生控制作用,使系统的输出量趋向于期望值。例如,在一个温度控制系统中,通过温度传感器检测实际温度(输出量),与设定的期望温度(输入量)比较,若实际温度低于期望温度,控制器就会加大加热功率,反之则减小加热功率。
    • 特点:具有较高的精度和适应性。因为它能根据输出与输入的偏差进行自动调整,所以当系统受到干扰导致输出变化时,能通过反馈机制减小偏差,使系统稳定在期望值附近。不过,反馈控制可能会出现超调现象,即系统输出在趋向期望值的过程中可能会超过期望值,然后再调整回来。
  • 开环控制方式
    • 原理:开环控制是指系统的输出量对控制作用没有影响,控制信号只按照预先设定的规律进行作用。比如,洗衣机按照设定的洗衣程序(如洗涤时间、漂洗次数等)进行工作,而不考虑衣物是否洗净等输出情况。
    • 特点:结构简单、成本较低、稳定性较好。但由于没有反馈环节,不能根据输出情况进行调整,所以控制精度相对较低,容易受到外部干扰和内部参数变化的影响。
  • 复合控制方式
    • 原理:复合控制是将开环控制和反馈控制相结合的一种控制方式。例如,在一些高精度的位置控制系统中,采用前馈补偿(开环)来快速跟踪输入信号的变化,同时利用反馈控制来消除系统的稳态误差和抑制干扰。
    • 特点:结合了开环控制和反馈控制的优点,可以在保证系统稳定性和精度的同时,提高系统的响应速度和抗干扰能力。

1-2自动控制系统示例

  • 恒温控制系统
    • 工作原理:一般由温度传感器、控制器、加热或制冷设备组成。温度传感器检测环境温度(输出),将温度信号转换为电信号传输给控制器。控制器将实际温度与设定温度(输入)进行比较,当实际温度低于设定温度时,控制器发出信号启动加热设备,升高温度;当实际温度高于设定温度时,控制器启动制冷设备或停止加热设备,降低温度。
    • 应用场景:在家庭中的空调系统、电烤箱、工业中的恒温反应釜等场景广泛应用,确保温度保持在所需的范围内。
  • 调速系统
    • 工作原理:以直流调速系统为例,通过测速发电机检测电机的转速(输出),将转速信号反馈给控制器。控制器根据给定的转速(输入)与实际转速的偏差,调节电机的电枢电压或励磁电流,从而改变电机的转速。
    • 应用场景:在电梯、机床、电动汽车等众多需要精确控制电机转速的设备中发挥关键作用,保证设备能够按照要求的速度运行。

1-3自动控制系统的分类

  • 线性与非线性系统
    • 线性系统:系统满足叠加原理,即若系统对输入信号 x 1 ( t ) x_1(t) x1(t)的响应为 y 1 ( t ) y_1(t) y1(t),对输入信号 x 2 ( t ) x_2(t) x2(t)的响应为 y 2 ( t ) y_2(t) y2(t),那么对于输入信号 a x 1 ( t ) + b x 2 ( t ) a x_1(t)+b x_2(t) ax1(t)+bx2(t) a a a b b b为常数)的响应为 a y 1 ( t ) + b y 2 ( t ) a y_1(t)+b y_2(t) ay1(t)+by2(t)。其数学模型通常用线性微分方程来描述,例如一个简单的一阶线性系统的微分方程为 d y ( t ) d t + a y ( t ) = b x ( t ) \frac{dy(t)}{dt}+ay(t)=bx(t) dtdy(t)+ay(t)=bx(t)。线性系统的特点是分析相对简单,有成熟的理论和方法,如拉普拉斯变换等可以用于求解系统的响应。
    • 非线性系统:不满足叠加原理。非线性系统的数学模型一般为非线性微分方程,如 d 2 y ( t ) d t 2 + y ( t ) d y ( t ) d t + y ( t ) = x ( t ) \frac{d^2y(t)}{dt^2}+y(t)\frac{dy(t)}{dt}+y(t)=x(t) dt2d2y(t)+y(t)dtdy(t)+y(t)=x(t)。非线性系统的行为比线性系统复杂得多,可能会出现极限环、分岔等复杂现象。例如,在一些机械系统中,当摩擦力与速度之间存在非线性关系时,系统就表现为非线性系统。
  • 连续和离散系统
    • 连续系统:系统中的信号(输入、输出等)是连续时间信号,即信号在时间轴上是连续变化的。其数学模型通常用微分方程来描述,如上述的线性和非线性微分方程。在实际应用中,模拟电路组成的控制系统大部分是连续系统,例如模拟音频放大器系统。
    • 离散系统:系统中的信号是离散时间信号,信号只在离散的时间点上有定义。离散系统的数学模型主要是差分方程。离散系统通常是由计算机或数字控制器进行控制的系统,例如数字式温度控制系统,其中温度传感器每隔一定时间(采样周期)对温度进行采样,控制器根据采样得到的离散温度信号进行计算和控制。
  • 定常和时变系统
    • 定常系统:系统的参数不随时间变化。例如,一个由固定电阻、电容和电感组成的线性电路系统,其电阻值、电容值和电感值在系统运行过程中保持不变,这就是定常系统。定常系统的数学模型中的系数是常数,分析和设计相对简单。
    • 时变系统:系统的参数随时间变化。比如,在一个卫星通信系统中,由于卫星与地面站之间的距离、环境干扰等因素随时间变化,信号传输的衰减系数等参数也会随之改变,这就是时变系统。时变系统的分析和控制要比定常系统复杂得多,因为其特性随时间而改变。

1-4对自动控制系统的基本要求

  • 稳定性
    • 含义:稳定性是指系统在受到扰动后,能够恢复到原来的平衡状态或者趋近于一个新的平衡状态的能力。例如,一个单摆系统,在受到一个小的外力扰动后,经过一段时间能够回到垂直静止状态,这就是稳定的。
    • 重要性:如果系统不稳定,其输出可能会无限增大或者产生持续的振荡,导致系统无法正常工作。在控制系统设计中,稳定性是首要考虑的因素,只有稳定的系统才能进一步考虑其性能指标。
  • 快速性
    • 含义:快速性是指系统对输入信号的响应速度。通常用调节时间、上升时间、峰值时间等性能指标来衡量。调节时间是指系统输出从初始状态到进入并保持在与稳态值的一定误差范围内所需的时间;上升时间是指系统输出从稳态值的10%上升到90%所需的时间;峰值时间是指系统输出达到第一个峰值所需的时间。
    • 重要性:在一些对响应速度要求较高的应用场景中,如导弹制导系统、高速自动化生产线等,系统需要快速地跟踪输入信号的变化,快速性就显得尤为重要。
  • 准确性
    • 含义:准确性是指系统在稳态时,输出能够准确地跟踪输入信号的程度,一般用稳态误差来衡量。稳态误差是指系统进入稳态后,输出与期望输出之间的差值。例如,在一个位置控制系统中,期望位置与实际位置之间的偏差就是稳态误差。
    • 重要性:对于一些需要高精度控制的系统,如精密加工机床、航空航天导航系统等,准确性是保证产品质量和系统性能的关键因素。

1-5自动控制系统的分析与设计工具

  • 微分方程
    • 用途:微分方程是描述连续系统动态特性的基本工具。通过对系统的物理过程进行建模,可以得到系统的微分方程。例如,对于一个简单的机械质量 - 弹簧 - 阻尼系统,根据牛顿第二定律可以建立二阶微分方程来描述物体的位移与外力之间的关系。
    • 求解方法:可以使用经典的求解微分方程的方法,如分离变量法、常数变易法等。对于线性常系数微分方程,还可以使用拉普拉斯变换的方法求解,将微分方程转换为代数方程,方便求解系统的响应。
  • 传递函数
    • 用途:传递函数是在拉普拉斯变换的基础上定义的,它是系统输出的拉普拉斯变换与输入的拉普拉斯变换之比,用于描述线性定常系统在复数域的特性。通过传递函数,可以方便地分析系统的稳定性、频率响应等性能。
    • 计算方法:首先对系统的微分方程进行拉普拉斯变换,然后根据传递函数的定义求出传递函数。例如,对于一个一阶系统的微分方程 d y ( t ) d t + a y ( t ) = b x ( t ) \frac{dy(t)}{dt}+ay(t)=bx(t) dtdy(t)+ay(t)=bx(t),对其进行拉普拉斯变换得到 s Y ( s ) − y ( 0 ) + a Y ( s ) = b X ( s ) sY(s) - y(0)+aY(s)=bX(s) sY(s)y(0)+aY(s)=bX(s),则传递函数 G ( s ) = Y ( s ) X ( s ) = b s + a G(s)=\frac{Y(s)}{X(s)}=\frac{b}{s + a} G(s)=X(s)Y(s)=s+ab(假设初始条件 y ( 0 ) = 0 y(0) = 0 y(0)=0)。
  • 状态空间方程
    • 用途:状态空间方程可以描述线性和非线性、定常和时变系统的动态特性。它以系统的状态变量为核心,通过状态方程和输出方程来描述系统。状态空间方程提供了一种更全面、更灵活的系统描述方法,尤其适用于多输入多输出系统和复杂系统的分析与设计。
    • 建立方法:首先确定系统的状态变量,状态变量是能够完全描述系统动态行为的一组最少变量。然后根据系统的物理规律或数学模型建立状态方程(描述状态变量的导数与状态变量、输入变量之间的关系)和输出方程(描述输出变量与状态变量、输入变量之间的关系)。例如,对于一个简单的二阶系统,可以选择位移和速度作为状态变量,建立状态空间方程来描述系统的动态行为。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请向我看齐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值