POJ 3280 Cheapest Palindrome(区间dp)

思路:

定义dp[i][j]为将ij位置的字符串转换为回文串,我们从小到大放大这个区间,定义w[c-'a']为字母c的花费,可得
d p [ i ] [ j ] = { d p [ i + 1 ] [ j − 1 ] s[i]==s[j] m i n ( d p [ i + 1 ] [ j ] + w [ s [ i ] − ′ a ′ ] , d p [ i ] [ j − 1 ] + w [ s [ j ] − ′ a ′ ] ) s[i]!=s[j] dp[i][j]= \begin{cases} dp[i+1][j-1]& \text{s[i]==s[j]}\\ min(dp[i+1][j]+w[s[i]-'a'],dp[i][j-1]+w[s[j]-'a'])& \text{s[i]!=s[j]} \end{cases} dp[i][j]={dp[i+1][j1]min(dp[i+1][j]+w[s[i]a],dp[i][j1]+w[s[j]a])s[i]==s[j]s[i]!=s[j]

代码:

#include<iostream>
#include<cctype>
#include<cstring>
#include<string> 
#include<algorithm>
using namespace std;
const int N=26;
const int MAX_M=2005;
int n,m,w[N],dp[MAX_M][MAX_M];  //dp[i][j]:the min cost to make the substring which from i to j legal 
string s;
void solve(){
	for(int i=m-2;i>=0;i--){
		for(int j=i+1;j<m;j++){
			if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1];
			else dp[i][j]=min(dp[i+1][j]+w[s[i]-'a'],dp[i][j-1]+w[s[j]-'a']);
		}
	}
	cout<<dp[0][m-1];
}
int main(){
	cin>>n>>m>>s;
	for(int i=0;i<n;i++){
		char c;
		int w1,w2;
		do{c=getchar();}while(!isalpha(c));
		cin>>w1>>w2;
		w[c-'a']=min(w1,w2);
	}
	solve();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值