卡尔曼滤波KF

卡尔曼滤波是一种基于贝叶斯估计的算法,通过系统模型和观测模型,利用状态向量及其协方差、系统噪声等进行最优估计。文章详细介绍了卡尔曼滤波的关键要素、误差与噪声、系统模型、观测模型、算法流程、滤波稳定性、闭环卡尔曼滤波、序贯更新、参数调整和算法设计,是理解并应用卡尔曼滤波的重要参考资料。
摘要由CSDN通过智能技术生成

KF

    根据贝叶斯估计的原理,卡尔曼滤波是利用已知系统模型的确定性特性和统计特性等先验知识与观测量获得最有估计,在有初始值的情况下,从先验值和最新观测数据中得到的新值的加权平均来更新状态估计。

1、卡尔曼滤波中的关键要素

状态向量及其协方差、系统模型、观测向量及其协方差、观测模型和滤波算法。

2、卡尔曼滤波中的误差与噪声

功率谱密度:单位带宽内的功率,也是单位带宽内的方差。
滤波过程中误差主要有3种:系统噪声,高斯-马尔可夫过程,白噪声
白噪声序列(white noise sequence) 是零均值不相关随机变量构成的离散时间序列。白噪声各个频率功率谱密度为常数,高斯白噪声的功率谱密度服从均匀分布,幅度分布服从高斯分布。白噪声序列的方差为: σ w 2 = τ w S w \sigma_w^2=\tau_wS_w σw2=τwSw式中 S w S_w Sw为白噪声过程的功率谱密度(power spectral density , PSD) ,即单位带宽内的方差。
高斯一马尔可夫过程(Gauss - Markov processes) 是随时间变化的量,是其先前值和白噪声序列的线性函数
一阶高斯马尔可夫
在这里插入图片描述
卡尔曼滤波基本假设:卡尔曼滤波的基本假设是:系统中模型化的误差为系统误差、白噪声或高斯-马尔可夫过程,也可以是它们的线性组合。卡尔曼滤波中假设所有未被建模的误差源均为白噪声,这对卡尔曼滤波非常重要,原因如图保证转换传播过程中依旧是高斯分布
在这里插入图片描述
需要用到的一些误差概念:
状态向量残差(state vector residual) 是真实状态向量与其卡尔曼滤波估
计之间的差 δ x = x − x ^ \delta x=x-\hat x δx=xx^
误差协方差矩阵(error covariance matrix) P 定义为状态估计与真值间偏差平方的期望值。 P = E ( ( x ^ − x ) ( x ^ − x ) T ) = E ( δ x δ x T ) P=E((\hat x-x)(\hat x-x)^T)=E(\delta x\delta x^T) P=E((x^x)(x^x)T)=E(δxδxT)
P矩阵的对角线元素是各个状态估计的方差,而它们的平方根是不确定度。
状态初始化值构成了先验估计值,而初始协方差矩阵值代表状态设置的置信度。
观测新息(measurement innovation) δ z − \delta z^- δz是实际观测向量与观测更新之前、由状态估计计算得来的观测向量之间的差值: δ z − = z − H ( x ^ − ) \delta z^-=z-H(\hat x^-) δz=zH(x^)
观测残差(measurement residual) δ z + \delta z^+ δz+,表示实际观测量与观测更新之后、由状态向量计算得到的观测量估计值之间的差值: δ z + = z − H ( x ^ + ) \delta z^+=z-H(\hat x^+) δz+=zH(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值