- 博客(10)
- 问答 (1)
- 收藏
- 关注
原创 【无标题】
非完整性约束是指车辆在地面上运动时,如果没有侧向滑动或者上下跳跃波动,其横向和垂直分量为0(b系),以此建立虚拟观测量抑制IMU发散。
2023-04-04 19:29:19 471
原创 卡尔曼滤波04_2 Sage-Husa自适应滤波
Sage-Husa自适应滤波自适应滤波的状态空间模型为:自适应滤波适用的系统为噪声和噪声的方差未知,且不是零均值。由于噪声未知,噪声参数的不准确可能会影响系统输出,此时自适应滤波采用一边进行参数估计一边进行状态识别来处理。自适应滤波的原则:噪声均值均可等效于状态增广(作为参数进行估计),激励噪声方差难以自适应,量测噪声方差相对容易自适应(可观测性更强的系统,才适用于自适应滤波),应尽量减少噪声自适应参数的数目。量测噪声的自适应方法:观测噪声方差R未知,由上式可以表示为:上式是一种统计的
2022-03-31 20:36:05 7342 4
原创 卡尔曼滤波04_1(遗忘滤波)
卡尔曼滤波041遗忘滤波(渐消记忆滤波)1遗忘滤波(渐消记忆滤波)遗忘滤波的功能是通过减小修改系统噪声和观测噪声的权重来减少历史信息的权重,相对提高新信息的权重,遗忘滤波的状态空间模型可以表示为:s为遗忘因子,s的取值越大遗忘速度就越大。k代表历元数,k=0,1,2,3…,k的取值越小说明历元就越靠前,噪声的放大指数就越大,以前的观测值就越不可靠。将新的噪声模型带入卡尔曼滤波公式可得:对于上面第二三五个方程通过分别左乘一个系数可以得到:由此这三个式子可以转换为:综上可得遗忘滤波公式
2022-03-23 21:06:44 1829
原创 卡尔曼滤波(03)
视频课的第三期(隔了好久才捡起来,前面的都要忘记了),这节主要就是介绍序贯滤波、信息滤波和平方根滤波目录1 序贯滤波2.信息滤波和信息融合2.1信息滤波2.2信息融合3.平方根滤波3.1Potter平方根滤波3.2奇异值(SVD)分解滤波3.3 UD分解滤波3.4平方根信息滤波(SRIKF)1 序贯滤波序贯滤波适用的情况为,观测为非常高维,每个观测可以看为一个小观测,例如用七天的观测值进行滤波,每一天为一个小观测,其模型可以表示为:序贯滤波执行框图如下图所示没有量测的时候就持续预测,有量测时
2022-03-21 21:32:12 3079
原创 卡尔曼滤波02
目录1 连续随机系统的离散化与连续时间KF1.1 连续时间方程系统离散化1 连续随机系统的离散化与连续时间KF1.1 连续时间方程系统离散化连续时间方程
2021-11-08 20:56:22 2357
原创 分位数回归与最小一乘法
刚开始学习分位数回归和最小一乘,在此记录一下我对分位数回归和最小一乘的理解文章目录一、分位数回归1.分位数2.分位数回归3.求解方法二、最小一乘法参考一、分位数回归1.分位数分位数指的就是连续分布函数中的一个点,这个点对应概率p。若概率0<p<1,随机变量X或它的概率分布的分位数Za,是指满足条件p(X≤Za)=α的实数。2.分位数回归回归分析就是处理自变量与因变量之间的关系,最常见的回归分析方法就是最小二乘法,但最小二乘的理论是依据于观测值误差服从零均值高斯分部的假设前提,.
2021-09-25 10:42:10 1429
原创 卡尔曼滤波(1)
卡尔曼滤波与组合导航原理01递推最小二乘卡尔曼滤波开始学习严恭敏老师的卡尔曼与组合导航原理视频课,课程资源在b站:https://www.bilibili.com/video/BV177411K7sS递推最小二乘递推最小二乘公式:由矩阵求逆引理可以推导为:卡尔曼滤波卡尔曼滤波方程:特性:(1)状态估计是量测的线性组合(2)正交投影性质由性质(1)可以看出估计值可以看成上一历元估计值与本历元观测值之间的一个线性组合,这两个向量是确定的,它们的线性组合在由这两个向量组成的平面上,本
2021-09-18 21:07:30 662
空空如也
Matlab里的chi2cd函数可以用C++实现吗?
2021-02-24
TA创建的收藏夹 TA关注的收藏夹
TA关注的人