费解的开关
题意:
你玩过“拉灯”游戏吗?25盏灯排成一个5x5的方形。每一个灯都有一个开关,游戏者可以改变它的状态。每一步,游戏者可以改变某一个灯的状态。游戏者改变一个灯的状态会产生连锁反应:和这个灯上下左右相邻的灯也要相应地改变其状态。
我们用数字“1”表示一盏开着的灯,用数字“0”表示关着的灯。下面这种状态
10111
01101
10111
10000
11011
在改变了最左上角的灯的状态后将变成:
01111
11101
10111
10000
11011
再改变它正中间的灯后状态将变成:
01111
11001
11001
10100
11011
给定一些游戏的初始状态,编写程序判断游戏者是否可能在6步以内使所有的灯都变亮。
数据范围
0<n≤500
思路:
通过观察发现这个游戏有一些特点:
1.第一行有32种状态
2.顺序可以任意
3.每个格子只能换一次
4.一旦第一行确定了,后面的每一行的状态都由前一行确定
所以可以枚举第一行的状态,来找到最小的步数。可以运用位运算来存储。
代码:
#include <iostream>
using namespace std;
const int N=7;
int n,m,a[N][N],b[N][N],ans1;
int main()
{
cin>>n;
while(n--)
{
ans1=0x3f;
int ans=0;
getchar();
for(int i=1;i<=5;i++)
{
for(int j=1;j<=5;j++)
{
char x=getchar();
b[i][j]=x-'0';
}
getchar();
}
for(int i=0;i<=(1<<5);i++)
{
ans=0;
for(int j=1;j<=5;j++)
for(int k=1;k<=5;k++)
a[j][k]=b[j][k];
for(int j=1;j<=5;j++)
{
if(i>>(j-1)&1)
{
ans++;
a[1][j-1]^=1;
a[1][j]^=1;
a[1][j+1]^=1;
a[2][j]^=1;
}
}
for(int j=1;j<=4;j++)
{
for(int k=1;k<=5;k++)
if(!a[j][k])
{
ans++;
a[j][k]^=1;
a[j+1][k]^=1;
a[j+1][k-1]^=1;
a[j+1][k+1]^=1;
a[j+2][k]^=1;
}
}
bool flag=true;
for(int j=1;j<=5;j++)
for(int k=1;k<=5;k++)
if(!a[j][k])
flag=false;
if(flag)
ans1=min(ans,ans1);
}
if(ans1<=6)
cout<<ans1<<endl;
else
cout<<-1<<endl;
}
return 0;
}