凸优化学习
学习笔记
一、原问题最优值 p ∗ \text p^* p∗与与对偶问题最优值 d ∗ \text d^* d∗分析
1、背景知识
对于一个普通优化问题:
min
f
0
(
x
)
(
P
)
s.t.
f
i
(
x
)
≤
0
i
=
1
⋯
m
h
i
(
x
)
=
0
i
=
1
⋯
p
\begin{aligned} \min&& f_0(x)&\\ (\text P)\qquad\text{s.t.}&&f_i(x)&\le0\qquad i=1\cdots m\\ &&h_i(x)&=0\qquad i=1\cdots p\\ \end{aligned}\\
min(P)s.t.f0(x)fi(x)hi(x)≤0i=1⋯m=0i=1⋯p
拉格朗日函数(
lagrangian function
\text{lagrangian function}
lagrangian function):
l
(
x
,
λ
,
v
)
=
f
0
(
x
)
+
∑
i
=
1
m
λ
i
f
i
(
x
)
+
∑
i
=
1
p
v
i
h
i
(
x
)
l(x,\lambda,v)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^pv_ih_i(x)
l(x,λ,v)=f0(x)+i=1∑mλifi(x)+i=1∑pvihi(x)
由拉格朗日函数构造的对偶函数(
dual function
\text{dual function}
dual function):
g
(
λ
,
v
)
=
inf
x
∈
D
l
(
x
,
λ
,
v
)
g(\lambda,v)=\inf_{x\in D}l(x,\lambda,v)
g(λ,v)=x∈Dinfl(x,λ,v)
其对偶问题为:
max
g
(
λ
,
v
)
(
D
)
s.t.
λ
≥
0
\begin{aligned} \max&& g(\lambda,v)&\\ (\text D)\qquad\text{s.t.}&&\lambda\ \ge0&\\ \end{aligned}\\
max(D)s.t.g(λ,v)λ ≥0
结论:
- 对偶问题是凸优化问题。
- d ∗ ≤ p ∗ \text d^*\le\text p^* d∗≤p∗
定义:
- p ∗ \text p^* p∗:原问题最优值。 d ∗ \text d^* d∗:对偶问题最优值。
- 弱对偶
Weak Duality
\text{Weak Duality}
Weak Duality:
d
∗
≤
p
∗
\text d^*\le\text p^*
d∗≤p∗时。任何优化问题都是弱对偶。
强对偶 Strong Duality \text{Strong Duality} Strong Duality: d ∗ = p ∗ \text d^*=\text p^* d∗=p∗时。凸问题一般是强对偶。 - p ∗ − d ∗ \text p^*-\text d^* p∗−d∗:对偶间隙 Duality gap \text{Duality gap} Duality gap。
- 相对内部
Relative Interior
\text{Relative Interior}
Relative Interior。
形如:
Relint D = { x ∈ D ∣ B ( x , r ) ∩ aff D ∈ D ∃ r ∈ D \text{Relint}D=\lbrace x\in D\mid B(x,r)\cap\text{aff}D\in D\quad\exist r\in D RelintD={x∈D∣B(x,r)∩affD∈D∃r∈D
其中, B ( x , r ) B(x,r) B(x,r)是以 x x x为中心, r r r为半径的球。 aff D \text{aff}D affD指 D D D的仿射包。
相当于将集合的边缘去掉,使之成为一个开集。
2、 d ∗ = p ∗ \text d^*=\text p^* d∗=p∗的条件
Slater’s Condition
\text{Slater's Condition}
Slater’s Condition(充分而不必要):
若有凸问题:
min
f
0
(
x
)
s.t.
f
i
(
x
)
≤
0
i
=
1
⋯
m
h
i
(
x
)
=
0
i
=
1
⋯
p
\begin{aligned} \min&& f_0(x)&\\ \text{s.t.}&&f_i(x)&\le0\qquad i=1\cdots m\\ &&h_i(x)&=0\qquad i=1\cdots p\\ \end{aligned}\\
mins.t.f0(x)fi(x)hi(x)≤0i=1⋯m=0i=1⋯p
当
∃
x
∈
relint
D
\exist x\in \text{relint}D
∃x∈relintD使
f
i
(
x
)
<
0
,
i
=
1
⋯
m
,
h
i
(
x
)
=
0
,
i
=
1
⋯
p
f_i(x)<0,i=1\cdots m,h_i(x)=0,i=1\cdots p
fi(x)<0,i=1⋯m,hi(x)=0,i=1⋯p满足时,
d
∗
=
p
∗
\text d^*=\text p^*
d∗=p∗。
一般我们见到的凸问题都是满足的,有一些人为构造的凸问题不满足。
当然这个可能还是有些难以满足,所以又有如下一个较弱的条件:
A Weaker Slater’s Condition
\text{A Weaker Slater's Condition}
A Weaker Slater’s Condition
若不等式约束为仿射时,只要可行域非空,必有
d
∗
=
p
∗
\text d^*=\text p^*
d∗=p∗。
线性规划若可行,必有
d
∗
=
p
∗
\text d^*=\text p^*
d∗=p∗。
例1: QCQP问题
min
1
2
x
T
P
0
x
+
q
0
T
x
+
r
0
(
P
)
s.t.
1
2
x
T
p
i
x
+
q
i
x
+
r
i
≤
0
i
=
1
⋯
m
P
0
∈
S
++
n
,
p
i
∈
S
+
n
\begin{aligned} \min&&\frac 1 2x^T\textbf{P}_{\textbf 0}x+q^T_0x+r_0&\\ (\text P)\qquad\text{s.t.}&&\frac 1 2 x^Tp_ix+q_ix+r_i&\le0\qquad i=1\cdots m\\ && \textbf{P}_{\textbf 0}\in\textbf{S}_{\textbf {++}}^n,p_i\in\textbf{S}_{\textbf +}^n \end{aligned}\\
min(P)s.t.21xTP0x+q0Tx+r021xTpix+qix+riP0∈S++n,pi∈S+n≤0i=1⋯m
拉格朗日函数(
lagrangian function
\text{lagrangian function}
lagrangian function):
l
(
x
,
λ
)
=
1
2
x
T
P
0
x
+
q
0
T
x
+
r
0
+
∑
i
=
1
m
λ
i
(
1
2
x
T
p
i
x
+
q
i
x
+
r
i
)
=
1
2
x
(
p
0
+
∑
i
=
1
m
λ
i
p
i
)
x
+
(
q
0
+
∑
i
=
1
m
λ
i
q
i
)
T
x
+
r
0
+
∑
i
=
1
m
λ
i
r
i
\begin{aligned} l(x,\lambda)&=\frac 1 2x^T\textbf{P}_{\textbf 0}x+q^T_0x+r_0+\sum_{i=1}^m\lambda_i(\frac 1 2 x^Tp_ix+q_ix+r_i)\\ &=\frac 1 2x(p_0+\sum_{i=1}^m\lambda_ip_i)x+(q_0+\sum_{i=1}^m\lambda_iq_i)^Tx+r_0+\sum_{i=1}^m\lambda_ir_i \end{aligned}
l(x,λ)=21xTP0x+q0Tx+r0+i=1∑mλi(21xTpix+qix+ri)=21x(p0+i=1∑mλipi)x+(q0+i=1∑mλiqi)Tx+r0+i=1∑mλiri
对偶函数(
dual function
\text{dual function}
dual function):
g
(
λ
)
=
inf
x
∈
D
l
(
x
,
λ
)
=
−
1
2
q
T
(
λ
)
p
−
1
(
λ
)
q
(
λ
)
+
r
(
λ
)
\begin{aligned} g(\lambda)&=\inf_{x\in D}l(x,\lambda)\\ &=-\frac 1 2q^T(\lambda)p^{-1}(\lambda)q(\lambda)+r(\lambda) \end{aligned}
g(λ)=x∈Dinfl(x,λ)=−21qT(λ)p−1(λ)q(λ)+r(λ)
其对偶问题为:
max
−
1
2
q
T
(
λ
)
p
−
1
(
λ
)
q
(
λ
)
+
r
(
λ
)
(
D
)
s.t.
λ
≥
0
\begin{aligned} \max&&-\frac 1 2q^T(\lambda)p^{-1}(\lambda)q(\lambda)+r(\lambda) \\ (\text D)\qquad\text{s.t.}&&\lambda\ \ge0\\ \end{aligned}\\
max(D)s.t.−21qT(λ)p−1(λ)q(λ)+r(λ)λ ≥0
显然
d
∗
=
p
∗
\text d^*=\text p^*
d∗=p∗,此时我们验证一下
Slater’s Condition
\text{Slater's Condition}
Slater’s Condition:
对于约束
1
2
x
T
p
i
x
+
q
i
x
+
r
i
≤
0
i
=
1
⋯
m
\frac 1 2 x^Tp_ix+q_ix+r_i\le0\qquad i=1\cdots m
21xTpix+qix+ri≤0i=1⋯m当
q
i
=
0
,
r
i
=
0
q_i=0,r_i=0
qi=0,ri=0时,怎么样都不满足此约束。
故QCQP问题是一个不满足
Slater’s Condition
\text{Slater's Condition}
Slater’s Condition但
d
∗
=
p
∗
\text d^*=\text p^*
d∗=p∗的问题。
个人思考
凸问题的另一良好性质展现了, d ∗ = p ∗ \text d^*=\text p^* d∗=p∗,这对于不是很好直接求解的凸问题提出了一种新的求解方法。
纸质笔记