凸优化——对偶问题

本文深入探讨了凸优化的核心概念,包括拉格朗日函数、对偶函数及其性质,通过实例解析共轭对偶问题,详细阐述了强对偶与弱对偶的概念,以及对偶问题在多目标优化和经济学中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拉格朗日函数与对偶函数

在这里插入图片描述

inf是极小化的意思
lambda和v是拉格朗日乘子(lambda——和不等式相关的拉格朗日乘子,v——和不等式相关的拉格朗日乘子)

对偶函数性质

在这里插入图片描述

g()<=L()<=p*

对偶函数例子

在这里插入图片描述

得一个关于v的凹函数
在这里插入图片描述
在这里插入图片描述

函数的共轭

在这里插入图片描述

共轭函数一定是一个凸函数

在这里插入图片描述
在这里插入图片描述

将一个拉格朗日对偶函数的一部分用共轭函数来表示

对偶问题

根据对偶函数性质2(如上),可以通过求最优的对偶函数来逼近p*的下界
在这里插入图片描述
在这里插入图片描述

D是对偶问题,P是原问题
对偶问题就是最大化对偶函数,同时lambda大于等于0

强对偶、弱对偶

对偶问题一定是一个凸优化问题

强对偶、弱对偶、对偶间隙

在这里插入图片描述

B(x,r)是以x为中心,r为半径的小球
aff D是D的仿射包
aff D可以理解为D所在的整个空间
Relint D其实就是把D的边界去掉形成的开集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

p*=d*的几种解释

在这里插入图片描述

几何解释

在这里插入图片描述
在这里插入图片描述

p是u<=0(St条件给定)下的f0(x)的最小值,即可行域下t的最小值
lambda
u+t得g(lambda)=在t轴的截距
在给定lambda大于等于0时,lambdau+t=g()的函数是一条直线。在求对偶函数时为了让g()最小,该直线必过下部的切线;在求d时为了让g()最大可以改变斜率lambda

鞍点的解释

在这里插入图片描述

多目标优化的解释

在这里插入图片描述
在这里插入图片描述

经济学解释

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值