拉格朗日函数与对偶函数
inf是极小化的意思
lambda和v是拉格朗日乘子(lambda——和不等式相关的拉格朗日乘子,v——和不等式相关的拉格朗日乘子)
对偶函数性质
g()<=L()<=p*
对偶函数例子
得一个关于v的凹函数
函数的共轭
共轭函数一定是一个凸函数
将一个拉格朗日对偶函数的一部分用共轭函数来表示
对偶问题
根据对偶函数性质2(如上),可以通过求最优的对偶函数来逼近p*的下界
D是对偶问题,P是原问题
对偶问题就是最大化对偶函数,同时lambda大于等于0
强对偶、弱对偶
对偶问题一定是一个凸优化问题
强对偶、弱对偶、对偶间隙
B(x,r)是以x为中心,r为半径的小球
aff D是D的仿射包
aff D可以理解为D所在的整个空间
Relint D其实就是把D的边界去掉形成的开集
p*=d*的几种解释
几何解释
p是u<=0(St条件给定)下的f0(x)的最小值,即可行域下t的最小值
lambdau+t得g(lambda)=在t轴的截距
在给定lambda大于等于0时,lambdau+t=g()的函数是一条直线。在求对偶函数时为了让g()最小,该直线必过下部的切线;在求d时为了让g()最大可以改变斜率lambda
鞍点的解释
多目标优化的解释