前言: 因为要跑比赛,要用到GPU,所以决定安装tensorflow-gpu版本,首先感谢广大博客网友的无私奉献,当然每个人遇到的情况不一样,会有一些坑,因为显卡驱动和tensorflow一直在更新,所以不同版本的安装方式也不一样,本文配置如下
- x86_64
- Ubuntu 18.0
- python2.7
- GPU:Quadro k600 / Tesla k20c
- cuda-10.0
- cudnn runtime+cudnn developer
- tensorflow-gpu-1.12.1
确认电脑显卡支持cuda
$ lspci | grep -i nvidia
此时你的电脑会显示显卡个数和型号
$ lspci | grep -i nvidia
02:00.0 VGA compatible controller: NVIDIA Corporation GK107GL [Quadro K600] (rev a1)
02:00.1 Audio device: NVIDIA Corporation GK107 HDMI Audio Controller (rev a1)
03:00.0 3D controller: NVIDIA Corporation GK110GL [Tesla K20c] (rev a1)
然后去NVIDIA官网查看对应型号及其性能,性能大于等于3.0的NVIDIA的显卡
(不知道自己的NVIDIA GPU的计算性能的可以在这里查到: https://developer.nvidia.com/cuda-gpus )
查看电脑系统
$ uname -m && cat /etc/*release
确定gcc已经安装
$ gcc --version
确定kernel版本
$ uname -r
安装kernel
$ sudo yum install kernel-devel-$(