力扣274-H指数

题目

给你一个整数数组 citations ,其中 citations[i] 表示研究者的第 i 篇论文被引用的次数。计算并返回该研究者的 h 指数

根据维基百科上 h 指数的定义h 代表“高引用次数” ,一名科研人员的 h 指数 是指他(她)至少发表了 h 篇论文,并且 至少 有 h 篇论文被引用次数大于等于 h 。如果 h 有多种可能的值,h 指数 是其中最大的那个。

示例 1:

输入:citations = [3,0,6,1,5]
输出:3 
解释:给定数组表示研究者总共有5篇论文,每篇论文相应的被引用了 3, 0, 6, 1, 5次。由于研究者有 3 篇论文每篇 至少 被引用了 3次,其余两篇论文每篇被引用 不多于 3次,所以她的 h 指数是3

示例 2:

输入:citations = [1,3,1] 输出:1

思路

  1. 排序:首先对引用次数进行排序。
  2. 计算 h 指数:从后往前遍历排序后的数组,找到满足条件的最大 h 值。

算法步骤

  1. 将 citations 数组进行排序。
  2. 遍历排序后的数组,从最后一篇论文开始,检查当前索引与该索引处的引用次数的关系。
  3. 找到最大满足条件的 h 值,即至少有 h 篇论文的引用次数大于等于 h。

代码:

class Solution {
public:
    int hIndex(vector<int>& citations) {
        int n=citations.size();
        int h=n;
        sort(citations.begin(),citations.end());
        for(int i=0;i<n;i++){
            if(citations[i]>=n-i){
                return n-i;
            }
        }
        return 0;
    }
    
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值