期望
- 在概率论和统计学中,数学期望(mean)(或均值,简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小
- 需注意,期望值并不一定等同于常识中的“期望”
- 期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。
- 期望值并不一定包含于变量的输出值集合里
1.1 效用函数的定义
- 效用函数通常是用来表示消费者在消费中 所获得的效用与 所消费的商品组合之间数量关系的函数,
- 以衡量消费者从消费既定的商品组合中所获得满足的程度
- 效用完全是消费者的一种主观心理感受。
- 满足程度越高, 效用越大;
- 满足程度越低, 效用越小。
- 设 f 是定义在消费集合 X 上的偏好关系:
- 如果对于 X 中任何的 x, y, xfy当且仅当 u(x)≥u(y),则称函数u:X→R是表示偏好关系f的效用函数
1.2 效用函数基本概念和常用符号
(1) 严格序 " ⊱ "
- a ⊱ b(或aPb):含义是 “a优于b”(a is preferred to b) ; 即, 若非外界因素强迫, 决策人只会选择 a 而不选择 b。
- 严格序 ⊱ 满足传递性和非对称性,即:
- 传递性:若 a,b,c ∈A, a ⊱ b且b ⊱ c 则必有a ⊱ c
- 非对称性:若 a,b ∈A A且a ⊱ b, 则不可能有b ⊱ a
(2) 无差异 "~ "
- a~b(或alb):含义是 “a无差异于b” (a is indifference to b); 也就是说, 决策人对选择或同样满意。
- 无差异~关系满足传递性对称性和自质性,
- 传递性:若 a,b,c∈A, 且 a~b, b~c, 则 a~c
- 对称性:若 a,b ∈ A且a~b, 则有 b~a
- 自反性: Va ∈A. a~av≥
(3)弱序 " ≥ "
- 记作 aRb,含义是"a不劣于b"'亦即a优于或者无差异于b。
- 弱序 ≥ 满足连通性,传递性,与严格优于 ⊱ 和无差异 ~ 的一致性
- 连通性,对于Va,b ∈A, a≥b 或 b≥a 或两者同时成立
- 传递性,a,b,c ∈A 若 a≥b 且 b≥c, 则 a ≥ c
- 与严格优于 ⊱的一致性,a ⊱ b 当且仅当 a≥b 且非b≥a
- 与无差异 ~ 的一致性, a~b 当且仅当 a≥b 且 b≥a