效用与效用函数

1.单调变换

设函数U(x)是一个效用函数,f(x)如果是严格增函数,那么把

f(U(x))叫做一个单调变换

如果U(x)可以表示一个效用函数,那么f(U(x))同样可以作为效用函数,且表示的偏好与U(x)相同。

2.几种常见的效用函数

2.1良态偏好效用函数

u(x_1,x_2)=x_1x_2是典型的良态偏好的例子

2.2完全替代

u(x_1,x_2)=ax_1+bx_2,如果替代率是1:1替代,则可表示为

u(x_1,x_2)=x_1+x_2及其单调变换后的函数形式

2.3完全互补

u(x_1,x_2)=min\{ax_1,bx_2\}

同样的如果替代率是1:1替代,则可表示为

u(x_1,x_2)=min\{x_1,x_2\}及其单调变换后的函数形式

2.4柯布-道格拉斯偏好

可以表述为:

u(x_1,x_2)=x_1^cx_2^d(1)

或者u(x_1,x_2)=x_1^{a}x_2^{1-a}(2)

通过单调变换,使f(x)=lnx

可以表述为u(x_1,x_2)=clnx_1+dlnx_2(3)

或者u(x_1,x_2)=alnx_1+(1-a)lnx_2(4)

其中第(1)种形式和第(2)种形式等同,原因在于取f(x)=x^{\frac{1}{c+d}}

做单调变换后,可以得到形式(2)

3.边际替代率

MRS_{1,2}=\frac{\Delta x_2}{\Delta x_1}

边际替代率表示减少一单位x_1的消费,需要增加多少单位x_2的消费才能保持总效用不变

\Delta x_1\Delta x_2的变化很小时,

MRS_{1,2}=\frac{\Delta x_2}{\Delta x_1}=\frac{dx_2}{dx_1}

又知道MU_1=\frac{dU}{dx_1},MU_2=\frac{dU}{dx_2}

因此MRS_{1,2}=\frac{MU_1}{MU_2}

4.一般最优

预算约束线为p_1x_1+p_2x_2=m

当偏好为良态偏好时,可以达到一般的最优状态

图4.1 一般最优

切线斜率为-\frac{p_1}{p_2}

那么需要使MRS_{1,2}=\frac{MU_1}{MU_2}=|-\frac{p_1}{p_2}|

即在\frac{MU_1}{MU_2}=\frac{p_1}{p_2}时,得到最优解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值