智能优化算法之蚁群算法代码实现【python、matlab】

智能算法 专栏收录该内容
7 篇文章 0 订阅

matlab代码:

clear;
close all;
clc;
C = [1304 2312;         % 城市坐标
    3639 1315;
    4177 2244;
    3712 1399;
    3488 1535;
    3326 1556;
    3238 1229;
    4196 1044;
    4312 790;
    4386 570;
    3007 1970;
    2562 1756;
    2788 1491;
    2381 1676;
    1332 695;
    3715 1678;
    3918 2179;
    4061 2370;
    3780 2212;
    3676 2578;
    4029 2838;
    4263 2931;
    3429 1980;
    3507 2376;
    3394 2643;
    3439 3201;
    2935 3240;
    3140 3550;
    2545 2357;
    2778 2826;
    2370 2975];
% figure(1);
% scatter(C(:,1),C(:,2),'k','d');
% title('城市分布图');
 
[M,N] = size(C);
% M为问题的规模  M个城市
distance = zeros(M,M);     % 用来记录任意两个城市之间的距离
% 求任意两个城市之间的距离
for m=1:M
    for n=1:M
        distance(m,n) = sqrt(sum((C(m,:)-C(n,:)).^2));
    end
end
m = 50;   % 蚂蚁的个数   一般取10-50    
alpha = 1;   %  信息素的重要程度    一般取【1,4】
beta = 5;    %  启发式英子的重要程度   一般取【3,5】
rho = 0.25;    % 信息素蒸发系数
G = 150;
Q = 100; % 信息素增加系数
Eta = 1./distance;  % 启发式因子
Tau = ones(M,M);  % 信息素矩阵  存储着每两个城市之间的信息素的数值
Tabu = zeros(m,M);  % 禁忌表,记录每只蚂蚁走过的路程
gen = 1;  
R_best = zeros(G,M);  % 各代的最佳路线
L_best = inf.*ones(G,1);   % 每一代的最佳路径的长度     初始假设为无穷大
%   开始迭代计算
while gen<G
    %  将m只蚂蚁放到n个城市上
    random_pos = [];
    for i=1:(ceil(m/M))  % m只蚂蚁随即放到M座城市 
        random_pos = [random_pos,randperm(M)];   %  random_pos=[1~31 + 1~31]   将每只蚂蚁放到随机的城市  在random_pos 中随机选择m个数,代表蚂蚁的初始城市
    end
    Tabu(:,1) = (random_pos(1,1:m))';   % 第一次迭代每只蚂蚁的禁忌表
    
    for i=2:M      %  从第二个城市开始
        for j=1:m   %  每只蚂蚁
            visited = Tabu(j,1:(i-1));   %  在访问第i个城市的时候,第j个蚂蚁访问过的城市
            % visited=visited(1,:);
            unvisited = zeros(1,(M+1-i));  %  待访问的城市
            visit_P = unvisited;   %  蚂蚁j访问剩下的城市的概率
            count = 1;
            for k=1:M   % 这个循环是找出未访问的城市  
                if isempty(find(visited==k))   %还没有访问过的城市  如果成立。则证明第k个城市没有访问过
                    unvisited(count) = k;
                    count = count+1;
                end
            end
            %  计算待选择城市的概率
            for k=1:length(unvisited)    % Tau(visited(end),unvisited(k))访问过的城市的最后一个与所有未访问的城市之间的信息素
                visit_P(k) = ((Tau(visited(end),unvisited(k)))^alpha)*(Eta(visited(end),unvisited(k))^beta);
            end
            visit_P = visit_P/sum(visit_P);   %  访问每条路径的概率的大小
            %   按照概率选择下一个要访问的城市
            %   这里运用轮盘赌选择方法      这里也可以选择选择概率最大的路径去走, 这里采用轮盘赌选择法。
            Pcum = cumsum(visit_P);
            selected = find(Pcum>=rand);
            to_visited = unvisited(selected(1));
            Tabu(j,i) = to_visited;  % 添加到禁忌表
        end
    end
    if gen>=2
        Tabu(1,:) = R_best(gen-1,:);
    end
    %  记录m只蚂蚁迭代的最佳路线
    L = zeros(1,m);
    for i=1:m
        R = Tabu(i,:);
        L(i) = distance(R(M),R(1));   % 因为要走一周回到原来的地点    
        for j=1:(M-1)
            L(i) = L(i)+distance(R(j),R(j+1));
        end
    end
    L_best(gen) = min(L);    %  记录每一代中路径的最短值
    pos = find(L==L_best(gen));
    R_best(gen,:) = Tabu(pos(1),:);   % 最优的路径
    
    %  更新信息素的值
    Delta_Tau = zeros(M,M);
    for i=1:m   %  m只蚂蚁
        for j=1:(M-1)   %  M座城市
            Delta_Tau(Tabu(i,j),Tabu(i,j+1)) = Delta_Tau(Tabu(i,j),Tabu(i,j+1)) + Q/L(i);    %  m只蚂蚁的信息素累加 这里采用的是论文中ant-cycle模型
        end
        Delta_Tau(Tabu(i,M),Tabu(i,1)) = Delta_Tau(Tabu(i,M),Tabu(i,1)) + Q/L(i);
    end
    Tau = (1-rho).*Tau+Delta_Tau;   % 更新路径上的信息素含量
    %  禁忌表清零
    Tabu = zeros(m,M);
    
    for i=1:(M-1)
        plot([C(R_best(gen,i),1),C(R_best(gen,i+1),1)],[C(R_best(gen,i),2),C(R_best(gen,i+1),2)],'bo-');
        hold on;
    end
    plot([C(R_best(gen,n),1),C(R_best(gen,1),1)],[C(R_best(gen,n),2),C(R_best(gen,1),2)],'ro-');
    title(['最短路径:',num2str(L_best(gen))]);
    hold off;
    pause(0.05);
    gen = gen+1;
end
figure(2);
plot(L_best);
title('路径长度变化曲线');
xlabel('迭代次数');
ylabel('路径长度数值');

输出结果
在这里插入图片描述
在这里插入图片描述

python代码实现

import numpy as np
import matplotlib.pyplot as plt
import pylab

coordinates = np.array([[565.0, 575.0], [25.0, 185.0], [345.0, 750.0], [945.0, 685.0], [845.0, 655.0],
                        [880.0, 660.0], [25.0, 230.0], [525.0, 1000.0], [580.0, 1175.0], [650.0, 1130.0],
                        [1605.0, 620.0], [1220.0, 580.0], [1465.0, 200.0], [1530.0, 5.0], [845.0, 680.0],
                        [725.0, 370.0], [145.0, 665.0], [415.0, 635.0], [510.0, 875.0], [560.0, 365.0],
                        [300.0, 465.0], [520.0, 585.0], [480.0, 415.0], [835.0, 625.0], [975.0, 580.0],
                        [1215.0, 245.0], [1320.0, 315.0], [1250.0, 400.0], [660.0, 180.0], [410.0, 250.0],
                        [420.0, 555.0], [575.0, 665.0], [1150.0, 1160.0], [700.0, 580.0], [685.0, 595.0],
                        [685.0, 610.0], [770.0, 610.0], [795.0, 645.0], [720.0, 635.0], [760.0, 650.0],
                        [475.0, 960.0], [95.0, 260.0], [875.0, 920.0], [700.0, 500.0], [555.0, 815.0],
                        [830.0, 485.0], [1170.0, 65.0], [830.0, 610.0], [605.0, 625.0], [595.0, 360.0],
                        [1340.0, 725.0], [1740.0, 245.0]])  # 城市坐标


def getdistmat(coordinates):
    num = coordinates.shape[0]
    distmat = np.zeros((52, 52))  # 打印一个52行52列的二维数组
    for i in range(num):
        for j in range(i, num):
            distmat[i][j] = distmat[j][i] = np.linalg.norm(coordinates[i] - coordinates[j])
    return distmat  # distmat[i][j] = distmat[j][i]表示城市i和j距离


distmat = getdistmat(coordinates)  # 二维数组,表示城市之间的距离
numant = 40  # 蚂蚁个数
numcity = coordinates.shape[0]  # 城市个数   shape[0]输出二维数组【numpy】的行数。
alpha = 1  # 信息素重要程度因子
beta = 5  # 启发函数重要程度因子
rho = 0.1  # 信息素的挥发速度
Q = 1  # 信息素强度
iter = 0
itermax = 250
etatable = 1.0 / (distmat + np.diag([1e10] * numcity))  # 启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度
pheromonetable = np.ones((numcity, numcity))  # 信息素矩阵        52行52列的二维数组。元素都是1
pathtable = np.zeros((numant, numcity)).astype(int)  # 路径记录表    40行52列的二维数组,目前都为0
# distmat = getdistmat(coordinates)  # 城市的距离矩阵
lengthaver = np.zeros(itermax)  # 各代(各个循环)路径的平均长度          # 一维数组,itermax个0
lengthbest = np.zeros(itermax)  # 各代及其之前遇到的最佳路径长度    # 一维数组,itermax个0
pathbest = np.zeros((itermax, numcity))  # 各代及其之前遇到的最佳路径长度         # itermax(250)行numcity(52)列的二维矩阵

while iter < itermax:  # 循环0-250次
    # 1、随机产生各个蚂蚁的起点城市
    if numant <= numcity:  # 1.1、城市数比蚂蚁数多
        #  permutation():随机排列序列,生成一个0-52的一维数组,[:numant]去除前numant个分配给pathtable中的第0列
        pathtable[:, 0] = np.random.permutation(range(0, numcity))[:numant]
    else:  # 1.2、蚂蚁数比城市数多,需要补足
        pathtable[:numcity, 0] = np.random.permutation(range(0, numcity))[:]  # 先将城市全部取出,剩下的蚂蚁随机分配
        # 剩下numant - numcity个蚂蚁,将分配给他们的城市数分配在他们的第0列
        pathtable[numcity:, 0] = np.random.permutation(range(0, numcity))[:numant - numcity]
    length = np.zeros(numant)  # 计算各个蚂蚁的路径距离,还未走,都是0.
    # 2、各个蚂蚁进行路径选择
    for i in range(numant):
        visiting = pathtable[i, 0]  # 当前所在的城市,将[i,0]位置的值赋值给visiting
        unvisited = set(range(numcity))  # 未访问的城市,以集合的形式存储{}
        unvisited.remove(visiting)  # 删除元素;利用集合的remove方法删除存储的数据内容
        # 3、循环numcity-1次,访问剩余的numcity-1个城市,循环为一只蚂蚁访问所有城市的过程
        for j in range(1, numcity):
            # 每次用轮盘法选择下一个要访问的城市
            listunvisited = list(unvisited)      # 列表,即为一维数组。
            probtrans = np.zeros(len(listunvisited))   # 创建一个【未被访问城市个数】一维数组,s元素全为0
            for k in range(len(listunvisited)):
                probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]], alpha) \
                               * np.power(etatable[visiting][listunvisited[k]], beta)
            cumsumprobtrans = (probtrans / sum(probtrans)).cumsum()    # cumsum()将probtrans数组中的值进行累加求和
            cumsumprobtrans -= np.random.rand()
            k = listunvisited[(np.where(cumsumprobtrans > 0)[0])[0]]  # python3中原代码运行bug,类型问题;鉴于此特找到其他方法
            # 通过where()方法寻找矩阵大于0的元素的索引并返回ndarray类型,然后接着载使用[0]提取其中的元素,用作listunvisited列表中
            # 元素的提取(也就是下一轮选的城市)
            pathtable[i, j] = k  # 添加到路径表中(也就是蚂蚁走过的路径),第i号蚂蚁第j步走的城市。
            unvisited.remove(k)  # 然后在为访问城市set中remove()删除掉该城市
            length[i] += distmat[visiting][k]    # 当前所在城市visiting到城市k的距离,length[]用于存储各个蚂蚁走的路径长度,一维数组。
            visiting = k
        length[i] += distmat[visiting][pathtable[i, 0]]  # 蚂蚁的路径距离包括最后一个城市和第一个城市的距离  TSP问题,访问所有城市后又回到了原点
        # 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数
    # 4、从当前循环中找出最小路径和最小路径长度并保存
    lengthaver[iter] = length.mean()   # 各代(各个循环)路径的平均长度
    if iter == 0:
        lengthbest[iter] = length.min()                      # length[]记录的是当前循环,每个蚂蚁走出的路径长度
        pathbest[iter] = pathtable[length.argmin()].copy()   # length.argmin()显示length[]中最小值的下标
    else:
        if length.min() > lengthbest[iter - 1]:              # 当前循环中的最小路径不是最优值
            lengthbest[iter] = lengthbest[iter - 1]
            pathbest[iter] = pathbest[iter - 1].copy()
        else:
            lengthbest[iter] = length.min()
            pathbest[iter] = pathtable[length.argmin()].copy()
    # 5、更新信息素
    changepheromonetable = np.zeros((numcity, numcity))
    for i in range(numant):
        for j in range(numcity - 1):
            # 更新蚂蚁i从城市j到j+1路径的信息素
            changepheromonetable[pathtable[i, j]][pathtable[i, j + 1]] += Q / distmat[pathtable[i, j]][
                pathtable[i, j + 1]]  # 计算信息素增量
        # 最后一个城市到第一个城市途径的信息素增量
        changepheromonetable[pathtable[i, j + 1]][pathtable[i, 0]] += Q / distmat[pathtable[i, j + 1]][pathtable[i, 0]]
    # 带入计算信息素公式,更新完毕,本次循环结束
    pheromonetable = (1 - rho) * pheromonetable + changepheromonetable  # 计算信息素公式
    iter += 1  # 迭代次数指示器+1
    print("iter:", iter)

# 做出平均路径长度和最优路径长度
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(12, 10))
axes[0].plot(lengthaver, 'k', marker=u'')
axes[0].set_title('Average Length')
axes[0].set_xlabel(u'iteration')

axes[1].plot(lengthbest, 'k', marker=u'')
axes[1].set_title('Best Length')
axes[1].set_xlabel(u'iteration')
fig.savefig('average_best.png', dpi=500, bbox_inches='tight')
plt.show()

# 作出找到的最优路径图
bestpath = pathbest[-1]   # 每次更新后,pathbest[-1]的最后一行,就是最优路径了
plt.plot(coordinates[:, 0], coordinates[:, 1], 'r.', marker=u'$\cdot$')
plt.xlim([-100, 2000])
plt.ylim([-100, 1500])

for i in range(numcity - 1):
    m = int(bestpath[i])
    n = int(bestpath[i + 1])
    plt.plot([coordinates[m][0], coordinates[n][0]], [coordinates[m][1], coordinates[n][1]], 'k')  # k为黑色
plt.plot([coordinates[int(bestpath[0])][0], coordinates[int(n)][0]],
         [coordinates[int(bestpath[0])][1], coordinates[int(n)][1]], 'b')  # 最后一个城市与第一个城市连线。 b为蓝色
ax = plt.gca()
ax.set_title("Best Path")
ax.set_xlabel('X axis')
ax.set_ylabel('Y_axis')

plt.savefig('best path.png', dpi=500, bbox_inches='tight')
plt.show()

结果输出
在这里插入图片描述

在这里插入图片描述

  • 2
    点赞
  • 1
    评论
  • 5
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值