Capter14: Vertex Colourings(点染色)

14.1 色数

基本概念

  • k-点染色: 图 G = ( V , E ) G=(V,E) G=(V,E)的一个k-点染色指从顶点集V(G)到颜色集{1,2…,k}的一个映射 c c c
  • 正常的k-点染色:若映射 c c c能使得任意两个相邻的顶点染不同的颜色,则称G有一个正常的k-点染色,我们称图G为k-点可染
  • 换个角度看,图G的一个k-点染色是把顶点集V(G)划分为k个颜色集 { V 1 , V 2 , … V k } \{V_1,V_2,…V_k\} {V1,V2,Vk};图G的一个正常k-点染色是指每个颜色集都是一个独立集(集合内点两两不相邻)。
  • 色数 χ ( G ) \chi(G) χ(G):图G是k-点可染的最小k值。举例:二部图的色数 χ \chi χ为2;奇圈色数为3。

贪婪着色算法

  • 算法目的:任意给定图G,通过算法能给出一种染色,使得满足正常点染色要求。注意:不一定是恰好染色数=色数

输入:图G
输出:图G的一个染色
1.任意选取图G的一个顶点序列: v 1 , v 2 ⋯ v n v_1,v_2 \cdots v_n v1,v2vn
2.对 v 1 v_1 v1染颜色1,对 v i v_i vi染已染邻点外颜色最小的色

  • 这个贪婪着色算法依赖于G顶点序列 v 1 , v 2 ⋯ v n v_1,v_2 \cdots v_n v1,v2vn的选取
    证明: X = { x 1 , x 2 ⋯ x n } X=\{x_1,x_2\cdots x_n \} X={x1,x2xn} Y = { y 1 , y 2 ⋯ y n } Y=\{y_1,y_2\cdots y_n \} Y={y1,y2yn},取图G为二部图G[X,Y]删去 { x i y i : 1 ≤ i ≤ n } \{x_iy_i:1\leq i \leq n\} {xiyi:1in}的匹配。取法一,取顶点序列为 { x 1 , x 2 ⋯ x n , y 1 , y 2 ⋯ y n } \{x_1,x_2\cdots x_n,y_1,y_2\cdots y_n\} {x1,x2xn,y1,y2yn},则由此贪婪算法可得到一个2-点染色。取法二,取顶点序列 { x 1 , y 1 , x 2 , y 2 , ⋯ x n , y n } \{x_1,y_1,x_2,y_2,\cdots x_n, y_n\} {x1,y1,x2,y2,xn,yn},则由此贪婪算法可得到一个n-点染色。如图所示在这里插入图片描述
  • 练习14.1.9 给定图G,总能找到顶点序,使得运用贪婪算法后得到的染色集数目恰好等于其色数。

证明:因为G的线性色数为 χ ( G ) \chi(G) χ(G),因此任取G的一个 χ ( G ) \chi(G) χ(G)-染色,颜色集为 { V 1 , V 2 , ⋯   , V χ } \{V_1,V_2,\cdots,V_\chi \} {V1,V2,,Vχ},其中 V i V_i Vi染颜色 i i i,将 V 1 , V 2 , ⋯   , V χ V_1,V_2,\cdots,V_\chi V1,V2,,Vχ中的顶点依次排序组成顶点序列 { v 11 , v 12 , ⋯   } ⏟ 染 色 1 , { v 21 , v 22 , ⋯   } ⏟ 染 色 2 , ⋯ { v χ 1 , v χ 2 , ⋯   } ⏟ 染 色 χ \begin{matrix} \underbrace{\{ v_{11},v_{12},\cdots\} } \\染色1\end{matrix},\begin{matrix} \underbrace{\{ v_{21},v_{22},\cdots\} } \\染色2\end{matrix},\cdots\begin{matrix} \underbrace{\{ v_{\chi1},v_{\chi2},\cdots\} } \\染色\chi\end{matrix} {v11,v12,}1, {v21,v22,}2, {vχ1,vχ2,}χ。用贪婪算法进行染色,首先对 V 1 V_1 V1中的顶点进行染色,由于 V 1 V_1 V1中点不相邻, 所以 V 1 V_1 V1中点全染色 1 ′ 1' 1,接着对 V 2 V_2 V2中的顶点进行染色,由于 V 2 V_2 V2中顶点未染色顶点只有 V 1 V_1 V1中点,所以 V 2 V_2 V2中的顶点染色为 { 1 ′ , 2 ′ } \{1',2'\} {1,2},……以此类推, V i V_i Vi中的顶点可能染色 { 1 ′ , 2 ′ , ⋯ ( i − 1 ) ′ } \{1',2',\cdots(i-1)'\} {1,2,(i1)},所以算法结束后得到的染色最多用了 χ ( G ) \chi(G) χ(G)种,这就找到了使得运用贪婪算法后得到的染色集数目恰好等于其色数的顶点序列。

色数界值

  • 下界 { χ ≥ n α χ ≥ w \begin{cases} \chi \geq \frac{n}{\alpha}\\ \chi \geq w \end{cases} {χαnχw,其中 α \alpha α w w w分别为图G独立集和团包含的最大顶点数。

证明:独立集是图G中两两不相邻顶点组成的集合,团是由顶点都相邻的顶点组成的集合。
  每种颜色集一定是独立集,因为如果染相同颜色顶点绝对不会相邻,而独立集最多含 α \alpha α个点,所以每种颜色最多含 α \alpha α个顶点,因此至少需要 n α \frac{n}{\alpha} αn种颜色,所以 χ ≥ n α \chi \geq \frac{n}{\alpha} χαn
  若一个团有 w w w个顶点,由于团内的点均相邻,所以需要 w w w种颜色,而图G包含一个有 w w w个顶点的团子图,所以图G染色需要的颜色更多,所以有 χ ≥ w \chi \geq w χw

  • 上界 { χ ≤ Δ + 1 , 等 号 条 件 : 每 种 颜 色 顶 点 数 最 多 差 1 χ ≤ Δ , 当 图 G 连 通 , 且 既 不 是 奇 圈 , 也 不 是 完 全 图 \begin{cases} \chi \leq \Delta +1 ,等号条件:每种颜色顶点数最多差1\\ \chi \leq \Delta ,当图G连通,且既不是奇圈,也不是完全图 \end{cases} {χΔ+1,1χΔ,G
  1. χ ≤ Δ + 1 \chi \leq \Delta +1 χΔ+1,等号条件:每种颜色顶点数最多差1

证明:用上述贪心算法染顶点 v v v时, v v v邻点最多只有 Δ \Delta Δ个,所以用颜色集 c = { 1 , 2 , ⋯   , Δ + 1 } c=\{1,2,\cdots,\Delta +1\} c={1,2,,Δ+1}可以对G染色,因此 χ ≤ Δ + 1 \chi \leq \Delta +1 χΔ+1。等号取到条件的证明看Kierstead and Kostochka (2006)的证明。

  • 练习14.1.3 若图G是k-色数图,则G至少有k个 ( k − 1 ) + (k-1)^+ (k1)+

  证法一:首先证明取G的一个k-染色,图G的每个颜色集 V i V_i Vi均存在一点 v v v, v v v与剩下k-1个颜色集均有连边。反证,若存在一个颜色集 V k V_k Vk V k V_k Vk中的点可能与别的颜色集相邻,但是不会和所有剩下k-1个颜色集均连边,因此我们可以用颜色集 c = { 1 , 2 , ⋯   , k − 1 } c=\{1,2,\cdots,k-1\} c={1,2,,k1}对颜色集 V k V_k Vk进行改染, 使得G可以(k-1)-可染,这与G的色数为k矛盾,因此图G的每个颜色集 V i V_i Vi均存在一点 v v v, v v v与剩下k-1个颜色集均有连边,则 d ( v ) ≥ k − 1 d(v)\geq k-1 d(v)k1
  而G有k个染色集,每个集合中均有点度≥k-1,所以G至少有k个 ( k − 1 ) + (k-1)^+ (k1)+点。
  证法二:G色数为k,而每个k-色数图必含一个k-临界图H,又因为临界图H最小度≥k-1(定理14.6),因此G最小度≥k-1,而G又k-可染,所以至少有k个顶点,因此G至少有k个 ( k − 1 ) + (k-1)^+ (k1)+点。

  • 练习6.1.10
     若连通图G的任意深度搜索树T都是哈密顿路(过点一次仅一次),则G只有3种情况:圈,完全图 K n K_n Kn,完全二部图 K n , n K_{n,n} Kn,n
  • Th14.4 Brook定理
    若图G连通,且G既不是奇圈,也不是完全图,则G的色数满足 χ ≤ Δ \chi \leq \Delta χΔ

证明:
 1.若G是正则图,则取最小度点 x x x d ( x ) = δ ≤ Δ − 1 d(x)= \delta \leq \Delta -1 d(x)=δΔ1。从 x x x出发进行搜索(广搜和深搜均可),得到以 x x x为根的搜索树T,因为G连通所以T包含了G中所有点。取颜色集 c = { 1 , 2 ⋯   , Δ } c=\{1,2 \cdots,\Delta\} c={1,2,Δ},用颜色集 c c c染G。选取树T中任意叶子结点 u u u,对 u u u染色1,接着每一步考察由T中未染色点导出的子树 T ′ T' T,取 T ′ T' T的叶子节点 v v v,对 v v v染其邻点没染过的最小颜色数。下面证明染色过程中至多只用了 Δ \Delta Δ种颜色。考察T中任意顶点 v v v
  ① v v v x x x,则在染 v v v时, v v v总有一个邻点在T中未染色,所以 v v v已染的邻点至多为 d ( v ) − 1 ≤ Δ − 1 < Δ d(v)-1 \leq\Delta-1<\Delta d(v)1Δ1<Δ,因此总存在颜色集 c c c中一种颜色染 v v v
  ②考察顶点 x x x,因为 d ( x ) = δ ≤ Δ − 1 d(x)= \delta \leq \Delta -1 d(x)=δΔ1,因此总存在颜色集 c c c中一种颜色染 v v v,从而G可以 Δ \Delta Δ-可染, 因此G的色数满足 χ ≤ Δ \chi \leq \Delta χΔ
 2.若G是正则图,由条件知G连通。
1)G有割点,设为 x x x,则由割点定义G- x x x不连通,不妨设有2个连通分支 G 1 , G 2 G_1,G_2 G1,G2 G 1 , G 2 G_1,G_2 G1,G2连通,且非正则(因为G正则),所以转化为非正则的情况,由1知 χ ( G 1 ) ≤ Δ ( G 1 ) ≤ Δ \chi(G_1)\leq\Delta(G_1)\leq\Delta χ(G1)Δ(G1)Δ χ ( G 2 ) ≤ Δ ( G 2 ) ≤ Δ \chi(G_2)\leq\Delta(G_2)\leq\Delta χ(G2)Δ(G2)Δ,而 χ ( G ) = m a x { χ ( G 1 ) , χ ( G 2 ) } ≤ Δ \chi(G)=max\{\chi(G_1),\chi(G_2)\}\leq\Delta χ(G)=max{χ(G1),χ(G2)}Δ,所以G的色数≤ Δ \Delta Δ
2)G无割点,即G是2-连通的,则考查G中任一点为根(从这个点开始搜索)的深度搜索树(必须是深搜)T,因为正则所以哪个点开始都行。
  ①若T全是哈密顿路,是路。搜索T不是路就是树,而且若是路肯定是哈密顿路,因为遍历了全部点。则由练习6.1.10知若连通图G的任意深度搜索树T都是哈密顿路,则G只有3种情况:圈,完全图 K n K_n Kn,完全二部图 K n , n K_{n,n} Kn,n,又由条件知不含奇圈和完全图,因此G只可能为偶圈或者完全二部图,而这两种情况色数均为2, χ ( G ) = 2 ≤ Δ \chi(G)=2\leq\Delta χ(G)=2Δ
  ②若存在T不是路,而是树,即 ∃ x \exists x x x x x有两个子节点 y , z y,z y,z,由于G无割点,因此G-y,G-z连通,所以 y , z y,z y,z要么是叶子节点,要么 y , z y,z y,z的后代与 x x x的祖先相连,且由深度搜索的过程知 y , z y,z y,z不相邻(如下图所示)。



考查G’=G-{y,z},则由以上两种情况,G’均连通,且由G的正则性知G’非正则。
  首先,对y,z染色1。再在G’中以x为根做搜索树T’,同1中染色,但是使用颜色集 c ′ = { 2 , 3 ⋯   , Δ } c'=\{2,3 \cdots,\Delta\} c={2,3,Δ},取树T’中任意叶子结点 u u u,对 u u u染色2,接着每一步考察由T中未染色点导出的子树 T ′ ′ T'' T,取 T ′ ′ T'' T的叶子节点 v v v,对 v v v染其在G中的邻点没染过的最小颜色数。下证染色可行。① v v v x x x,则在染 v v v时, v v v总有一个邻点在T’中未染色,所以总存在颜色集 c ’ c’ c中一种颜色染 v v v。②考察顶点 x x x,因为x的两个邻点y,z染相同颜色,因此总存在颜色集 c ′ c' c中一种颜色染 v v v。再结合y,z染色1,其余点染 c ′ = { 2 , 3 ⋯   , Δ } c'=\{2,3 \cdots,\Delta\} c={2,3,Δ},从而G可以 Δ \Delta Δ-可染, 因此G的色数满足 χ ≤ Δ \chi \leq \Delta χΔ

有向图的染色

  • 有向图的点染色:有向图D的正常点染色是对其底图G(抹去D中方向)染色,使得相邻点不染相同颜色。
  • 有向图的色数:有向图D的色数 χ ( D ) \chi(D) χ(D)与底图G的色数 χ ( G ) \chi(G) χ(G)相同。
  • 问题:那为什么还要研究有向图D的染色?
    回答:因为有着较大色数的有向图,会有一条较长的有向路。
  • Th14.5 Gallai-Roy定理
    若有向图D色数为 χ \chi χ,则D必有一条长为 χ \chi χ的有向路。

证明:设D中最长有向路长度为k,只要我们证明D是k-点可染的,就有 χ ≤ k \chi\leq k χk,所以在这条最长路上就能取到长为 χ \chi χ的有向子路。
   首先,取D’为D的极大无圈子图(D删边得到),定义c(v)为D’中从v出发最长有向路的长度,对v点染c(v)色,下面证明这样的染色是k-可染的,即考查底图中相邻点不染同色,取(u,v)为D中弧,不妨设u→v。
 1.若(u,v)也为D’中弧(u→v),则考查D’中以v为起点的最长路P,则显然u不在P上,否则 v → P u → v v\xrightarrow[]{P}u\to v vP uv构成了圈,与D’是极大无圈子图矛盾。又因为u,v在D’中,因此u→v→P是D’中的一条有向路,记为Q,则显然D’中从u为起点最长有向路的长≥Q长度>P长度,因此c(u)>c(v),所以u,v不染相同颜色。
 2.若(u,v)不是D’中弧,则由D’的极大性,D’+(u,v)含圈,因此存在D’中从v到u的路P( v → D ′ 中 P u v\xrightarrow[D'中]{P}u vP Du)。取D’中u为起点的最长路Q,显然 V ( P ) ∩ V ( Q ) = { u } V(P)∩V(Q)=\{u\} V(P)V(Q)={u},否则若 V ( P ) ∩ V ( Q ) = { u , w } V(P)∩V(Q)=\{u,w\} V(P)V(Q)={u,w},P以v起点,Q以u起点,则 u → Q w → P u u\xrightarrow[]{Q}w\xrightarrow[]{P}u uQ wP u存在圈,所以 V ( P ) ∩ V ( Q ) = { u } V(P)∩V(Q)=\{u\} V(P)V(Q)={u}。因此P∪Q是D’中以v为起点的路, v → P u → Q . . . v\xrightarrow[]{P}u\xrightarrow[]{Q}... vP uQ ...,但不一定是最长,所以c(v)≥P∪Q长度>Q长度=c(u),所以u,v不染相同颜色。因此D是k-点可染的,有 χ ≤ k \chi\leq k χk,所以在这条最长路上就能取到长为 χ \chi χ的有向子路。

14.2 临界图

临界图定义

  • 临界染色的:若图G的任意真子图H,均有 χ ( H ) < χ ( G ) \chi(H)<\chi(G) χ(H)<χ(G),则称图G为临界染色的。
  • k-临界图:图G是k-临界图定义是
             ①G的色数为k
             ②图G的任意真子图H,均有 χ ( H ) < χ ( G ) \chi(H)<\chi(G) χ(H)<χ(G)
  • 注意到k-临界图是极小的k-色数图,所以每个k-色数图均有一个k-临界图子图
  • 下图是4-临界图的一个例子。

  • 定理14.6
     若G是k-临界图,则最小度 δ ≥ k − 1 \delta\geq k-1 δk1

证明:反证,设v为最小度顶点, d ( v ) = δ < k − 1 d(v)=\delta<k-1 d(v)=δ<k1,则由于G的临界性,H=G-v为k-1-可染,又因为v至多只有k-2个邻点,因此H的k-1染色可以拓展到G中,使得G k-1可染,这与G色数为k矛盾。

  • 推论(练习14.4.3)
      若图G是k-色数图,则G至少有k个 ( k − 1 ) + (k-1)^+ (k1)+

G色数为k,而每个k-色数图必含一个k-临界图H,又因为临界图H最小度≥k-1(定理14.6),因此G最小度≥k-1,而G又k-可染,所以至少有k个顶点,因此G至少有k个 ( k − 1 ) + (k-1)^+ (k1)+点。

在S上一致

  • 设S是G的一个点割集, V 1 , V 2 ⋯ V t V_1,V_2\cdots V_t V1,V2Vt为G-S的连通分支,则 G i = G [ V i ∪ S ] G_i=G[V_i \cup S] Gi=G[ViS]称为G关于S的S-分支

  • 若存在 G 1 , G 2 ⋯ G t G_1,G_2\cdots G_t G1,G2Gt的染色,S的点都能染相同的颜色,则称这样的染色在S上一致

  • 定理14.7
     若G是k-临界图,则G没有团割,即G没有点割集S,S里面的点均相邻。

证明:反证法。 设G有一个团割S,设G的S-分支为 G 1 , G 2 ⋯ G t G_1,G_2\cdots G_t G1,G2Gt,因为G是k-临界图,所以 G i G_i Gi为k-1可染。进一步,因为S是一个团,所以S中任意两点相邻,因此S中各个顶点在 G i G_i Gi的任意k-1染色中一定染不同的颜色。这样可以找到染色使得在 G 1 , G 2 ⋯ G t G_1,G_2\cdots G_t G1,G2Gt上,S顶点都染相同的染色,即存在 G 1 , G 2 ⋯ G t G_1,G_2\cdots G_t G1,G2Gt的一组k-1染色,它们在S上一致。这样的染色合在一起就形成了G的一个k-1染色,矛盾。

  • 推论14.8 临界图均不可分

证明:在无环图中,图G不可分 ⇔ \Leftrightarrow G无割点。因为割点也是特殊的团割,而由定理14.7知临界图无团割,所以临界图G无割点,所以图G不可分。

可分和不可分概念

  • 可分的:若连通图G可以分解为两部分,而这两部分只有一个公共端点v,则称G是可分的,v为分离点。

  • 分离点:无环图中,分离点 ⇔ \Leftrightarrow 割点。有环图中,带环的顶点也可以算分离点,但不一定是割点。

  • 不可分的:没分离点的图

  • 块:极大的不可分图,例如圈,树,一条边

G的{u,v}分支Ⅰ型和Ⅱ型

定理14.7的又一推论 若临界图G有一个2顶点割{u,v},则u和v不能相邻。

  • 对于G的{u,v}分支 G i G_i Gi,若 G i G_i Gi的每个k-1染色均分配给u,v相同的颜色,则称 G i G_i GiⅠ型,若 G i G_i Gi的每个k-1染色均分配给u,v不同的颜色,则称 G i G_i GiⅡ型。如下图所示
  • 定理14.9 设G是k-临界图,且有一个2-点割{u,v},设G的{u,v}分支为 G i G_i Gi,给u,v连新边e,则:
    1.G可以写成 G 1 ∪ G 2 G_1\cup G_2 G1G2的形式,其中 G 1 G_1 G1是Ⅰ型, G 2 G_2 G2是Ⅱ型
    2.令 H 1 = G 1 + e H_1=G_1+e H1=G1+e H 2 = G 2 / { u , v } H_2=G_2/\{u,v\} H2=G2/{u,v}(收缩,把两个点合一起),则 H 1 H_1 H1 H 2 H_2 H2均为k-临界图。

 1. 因为G是临界图,所以G的每个{u,v}分支都是k-1可染的,但是不可能存在染色使得u,v在每个分支中的染色均相同,否则合起来就是G的一个k-1染色,矛盾,所以存在{u,v}分支的两个分支 G 1 G_1 G1 G 2 G_2 G2,在 G 1 G_1 G1 G 2 G_2 G2上u,v染色不同。
  若u,v在 G 2 G_2 G2中一定染不同颜色,则 G 2 G_2 G2是Ⅱ型,则任意染色u,v在 G 1 G_1 G1中必同色,则 G 1 G_1 G1是Ⅰ型。又因为 G 1 G_1 G1 G 2 G_2 G2是不同类型的图,所以子图 G 1 ∪ G 2 G_1\cup G_2 G1G2不是k-1可染,而G又是临界图,所以必有 G = G 1 ∪ G 2 G=G_1\cup G_2 G=G1G2
2. 证明 H 1 H_1 H1 H 2 H_2 H2均为k-临界图
 1)证 H 1 H_1 H1为k-临界图。首先,因为 G 1 G_1 G1是Ⅰ型,即在 G 1 G_1 G1中有个k-1染色使得u,v染同色,现在给u,v加边,只要让 G 1 G_1 G1中的u染个额外的k色,就能使得 H 1 H_1 H1为k-可染。下证 H 1 H_1 H1为临界图,只需证删去 H 1 H_1 H1的任意边f, H 1 − f H_1-f H1f都是k-1可染的。
  ①若f=e,则 H 1 − f = G 1 H_1-f=G_1 H1f=G1显然是k-1可染的。
  ②若f≠e,我们来找 H 1 − f H_1-f H1f的一个k-1染色。考查G-f,因为G是临界图,所以G-f是k-1可染的,又因为 G 2 G_2 G2是G-f的子图(因为边f在 G 1 G_1 G1中),所以G-f的任何k-1染色中u,v均不染同色,所以这个染色可以给 H 1 − f H_1-f H1f染,使得 H 1 − f H_1-f H1f是k-1可染的。
 2)证 H 2 = G 2 / { u , v } H_2=G_2/\{u,v\} H2=G2/{u,v}为k-临界图。证 H 2 H_2 H2k-可染,反证,若 H 2 H_2 H2不是k-可染,而是k-1可染,则用k-1色集给 H 2 H_2 H2染色,再在 G 2 G_2 G2中对u,v染相同的颜色,这样使得 G 2 G_2 G2k-1可染,且u,v染相同色,与 G 2 G_2 G2是u,v必染不同色矛盾。
  再证 H 2 H_2 H2临界, H 2 H_2 H2中删去任意边都可以用 G 2 G_2 G2的k-1染色拓展到 H 2 − e H_2-e H2e中去,所以 H 2 H_2 H2为k-临界图

14.3 围长和色数

  • 围长:图G中最短的圈长度
      在图G的任意染色中,团的各个顶点必须染不同的颜色,因此具有较大团的图一定有较大的色数。这里说明,围长小可以有大色数,但是大色数不一定围长均较小。
      我们可以证明
      1.存在着色数和围长都可以任意大的图( E r d s Erds Erds应用概率的方法证明)
      2.存在有着任意大色数但是不含三角形的图,即围长>3。
  • 定理14.10 对于任意k,总存在围长和色数至少为k的图。

证明:考察 G ∈ g n , p G\in g_{n,p} Ggn,p g n , p g_{n,p} gn,p指的是由n个点,连边概率为p的图组成的概率空间,如下所示是 g 3 , p g_{3,p} g3,p概率空间。

  1.选取特定的p
  设X是G中圈长小于k的圈数, X i X_i Xi为G中i-圈个数,则期望 E ( X ) = ∑ i = 3 k − 1 E ( X i ) E(X)=\sum_{i=3}^{k-1}E(X_i) E(X)=i=3k1E(Xi)
  ①i-圈个数 X i X_i Xi:先确定圈中顶点,n个点中任意取i个点有 C n i C_n^i Cni种 ;接着构成圈,第一个点可以和其余i-1个任一点连边,第二个点可以和剩下i-2个任一点连边,因此有(i-1)!种,但是第一个点和最后点重合,所以即圈调换秩序还是同个圈,所以应除2。所以共有 C n i ( i − 1 ) ! 2 C_n^i\frac{(i-1)!}{2} Cni2(i1)!个i-圈。
  ②概率:i-圈有i个点连边,而连边概率为p,因此概率是 p i p^i pi
  所以 E ( X ) = ∑ i = 3 k − 1 C n i ( i − 1 ) ! 2 p i E(X)=\sum_{i=3}^{k-1}C_n^i\frac{(i-1)!}{2}p^i E(X)=i=3k1Cni2(i1)!pi。令 ( n ) i = n ( n − 1 ) ⋯ ( n − i + 1 ) (n)_i=n(n-1)\cdots (n-i+1) (n)i=n(n1)(ni+1),因此E(X)可化简为 E ( X ) = ∑ i = 3 k − 1 ( n ) i 2 i p i < ) = ∑ i = 3 k − 1 ( n p ) i = ( n p ) k − 1 n p − 1 E(X)=\sum_{i=3}^{k-1}\frac{(n)_i}{2i}p^i<)=\sum_{i=3}^{k-1}(np)^i=\frac{(np)^k-1}{np-1} E(X)=i=3k12i(n)ipi<)=i=3k1(np)i=np1(np)k1(<是因为n(n-1)…(n-i+1)< n i n^i ni<2i n i n^i ni)。
  由马尔科夫不等式 P ( x ≥ t ) < E X t P(x\geq t)<\frac{EX}{t} P(xt)<tEX P ( X > n / 2 ) P(X>n/2) P(X>n/2)< E X n / 2 \frac{EX}{n/2} n/2EX< 2 [ ( n p k ) − 1 ] n ( n p − 1 ) \frac{2[(np^k)-1]}{n(np-1)} n(np1)2[(npk)1],因为我们只需要找到图有k围长和色数,所以取p使得 n p = n 1 k np=n^{\frac{1}{k}} np=nk1时有 P ( x ≥ t ) < 2 ( n − 1 ) n ( n 1 k − 1 ) P(x\geq t)<\frac{2(n-1)}{n(n^\frac{1}{k}-1)} P(xt)<n(nk11)2(n1) → 0 \rightarrow0 0(当n趋于无穷时)。因此G中小于k的圈至多只有n/2个。
  2.通过G构造出 G ′ G' G使得 G ′ G' G围长和色数均≥k。
  通过在G中每个小于k的圈删去一个点,即破坏小于k的圈得到 G ′ G' G。因此 G ′ G' G围长至少为k,因为小于k的圈被破坏了,而且 G ′ G' G至少含n/2个点,因为G有超过n/2个 k + k^+ k+圈,所以最多删去n/2个点。下证 G ′ G' G色数≥k。
  易知 χ ( G ′ ) ≥ v ( G ′ ) α ( G ′ ) \chi(G')\geq\frac{v(G')}{\alpha(G')} χ(G)α(G)v(G),其中 α ( G ′ ) \alpha(G') α(G) G ′ G' G独立集最多点数,而我们知道G有一个点至少为 ⌈ 2 p − 1 l o g n ⌉ \lceil2p^{-1}logn\rceil 2p1logn的独立集(定理13.6),因此 α ( G ′ ) ≥ ⌈ 2 p − 1 l o g n ⌉ \alpha(G')\geq\lceil2p^{-1}logn\rceil α(G)2p1logn,推出 χ ( G ′ ) ≥ v ( G ′ ) α ( G ′ ) ≥ n / 2 ⌈ 2 p − 1 l o g n ⌉ \chi(G')\geq\frac{v(G')}{\alpha(G')}\geq\frac{n/2}{\lceil2p^{-1}logn\rceil} χ(G)α(G)v(G)2p1lognn/2~ n 1 / k 8 l o g n \frac{n^{1/k}}{8logn} 8lognn1/k,当n取足够大时可以使得 G ′ G' G色数≥k。

  • 定理14.11 对于任意k,存在色数为k但是不含三角形的图。
  • 这种图的递推做法首先是由 Blanche Descartes在1954年给出的(事实上,用她的做法可以能做出色数任意大但是不含圈长小于6的图 见EX14.3.3)
  • 但这里我们介绍由 Mycielski (1955)给出的一个更简单的作图法。

证明:数学归纳法,当k=1,k=2时显然能成立。假设k时成立,即存在存在色数为k但是不含三角形的图 G k G_k Gk,考查k+1时。
  设 G k G_k Gk的顶点序列为 v 1 , v 2 ⋯   , v n v_1,v_2\cdots,v_n v1,v2,vn(线性色数为k,但是点肯定比k多),从 G k G_k Gk构造新图 G k + 1 G_{k+1} Gk+1,构造规则:①添加n+1个点: { u 1 , u 2 ⋯   , u n , v } \{u_1,u_2\cdots,u_{n},v\} {u1,u2,un,v}②连边: u i u_i ui连接 v i v_i vi的邻点和v。例如,下图就是由 G 3 G_3 G3添点和边构造出了 G 4 G_4 G4

  图 G k + 1 G_{k+1} Gk+1显然不包含三角形。 { u 1 , u 2 ⋯   , u n } \{u_1,u_2\cdots,u_{n}\} {u1,u2,un}相互没连边,是独立集,所以不会有三角形含 { u 1 , u 2 ⋯   , u n } \{u_1,u_2\cdots,u_{n}\} {u1,u2,un}中两个点。因为 G k G_k Gk中无三角形,所以不会有三角形顶点都是 v 1 , v 2 ⋯   , v n v_1,v_2\cdots,v_n v1,v2,vn中的点。因此如果 G k + 1 G_{k+1} Gk+1存在三角形,只可能是包含两个 v i v_i vi和一个 u i u_i ui,不妨设三角形中点为 u i , v j , v k u_i,v_j,v_k ui,vj,vk,因为三角形这三个点两两相邻,所以 u i u_i ui v j , v k v_j,v_k vj,vk相邻,而我们构造 G k + 1 G_{k+1} Gk+1的时候是给 u i u_i ui v i v_i vi的邻点连边,所以 v j , v k v_j,v_k vj,vk v i v_i vi的邻点,而 v j , v k v_j,v_k vj,vk又相邻,所以 v i , v j , v k v_i,v_j,v_k vi,vj,vk组成了 G k G_k Gk中三角形,这与 G k G_k Gk无三角矛盾。
  下面我们来证明 G k + 1 G_{k+1} Gk+1色数为k+1。因为 G k G_k Gk色数为k,所以存在k-染色,我们在此基础上对 u i u_i ui v i v_i vi色,v染新色,由 G k + 1 G_{k+1} Gk+1的构造规则易知,这个染色是 G k + 1 G_{k+1} Gk+1的k+1染色。
  下证, G k + 1 G_{k+1} Gk+1不是k-可染的。
 证法一,反证,若 G k + 1 G_{k+1} Gk+1是k-可染的,则存在一个染色可以使 G k + 1 G_{k+1} Gk+1中顶点v染颜色k,因为 u i u_i ui都和v相邻,所以没有 u i u_i ui染色k。现在对染色k的 v i v_i vi进行改染,用 u i u_i ui的颜色染 v i v_i vi,则可以得到 G k G_k Gk的一个k-1染色,这与 G k G_k Gk色数为k矛盾。所以 G k + 1 G_{k+1} Gk+1不是k-可染的,而 G k + 1 G_{k+1} Gk+1又可以k+1染色,所以 G k + 1 G_{k+1} Gk+1色数为k+1。
 证法二,反证假设 G k + 1 G_{k+1} Gk+1存在一个k-染色c,且这个染色c在 G k G_k Gk也适用,因为 G k G_k Gk的色数为k。则考查这个染色在 G k G_k Gk上的应用,将 G k G_k Gk的顶点分为k个染色集,由练习14.1.3知每个颜色集j里均存在一个 v i v_i vi v i v_i vi与剩下的其他颜色集相邻,即 v i v_i vi的邻点染k-1种不同颜色,而 G k + 1 G_{k+1} Gk+1 u i u_i ui v i v_i vi的邻点均相邻, 所以 u i u_i ui只能染和 v i v_i vi一样的颜色。但是每个颜色集均有这样一个 v i v_i vi,所以说至少有k个 v i v_i vi,所以至少有k个 u i u_i ui染不同颜色,但v与所有 u i u_i ui相邻,所以v没颜色染了,所以这个k-染色c没法染 G k + 1 G_{k+1} Gk+1,矛盾。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值