Capte4 布朗运动和伊藤公式

一、Brown 布朗运动

1.1 马氏性

  • 马氏性质:未来只与现在有关,与过去无关
  • 马尔科夫链(马氏链)
    随机过程 { X ( t ) , t ∈ T } \{X(t),t\in T\} {X(t),tT},状态空间 I = { 0 , 1 , 2 , ⋯   } I=\{0,1,2,\cdots\} I={0,1,2,},若对任一时刻 n n n以及任意状态 i 0 , i 1 , ⋯   , i n − 1 , i , j i_0,i_1,\cdots,i_{n-1},i,j i0,i1,,in1,i,j,有 P ( X ( x n + 1 ) = j ∣ X ( n ) = i , X ( i n − 1 ) = i n − 1 , ⋯   , X ( 1 ) = i , X ( 0 ) = i 0 ) = P ( X ( n + 1 ) = j ∣ X ( n ) = i ) P(X(x_{n+1})=j|X(n)=i,X(i_{n-1})=i_{n-1},\cdots,X(1)=i,X(0)=i_0)=P(X(n+1)=j|X(n)=i) P(X(xn+1)=jX(n)=i,X(in1)=in1,,X(1)=i,X(0)=i0)=P(X(n+1)=jX(n)=i),即n+1时刻状态只与前一时刻有关,与之前无关。
  • 连续马尔可夫过程(时间连续,状态离散)
    P ( X ( x t + s ) = j ∣ X ( s ) = i , X ( u ) = x ( u ) , 0 ≤ u ≤ s ) = P ( X ( x t + s ) = j ∣ X ( s ) = i ) P(X(x_{t+s})=j|X(s)=i,X(u)=x(u),0\leq u\leq s)=P(X(x_{t+s})=j|X(s)=i) P(X(xt+s)=jX(s)=i,X(u)=x(u),0us)=P(X(xt+s)=jX(s)=i)
  • 马氏性总结
    马 氏 性 = { 马 氏 链 = 时 间 、 状 态 均 离 散 马 氏 过 程 = 时 间 、 状 态 均 连 续 泊 松 、 连 续 时 间 马 氏 链 = 时 间 连 续 、 状 态 离 散 马氏性=\left\{ \begin{aligned} 马氏链&=时间、状态均离散 \\ 马氏过程& =时间、状态均连续\\ 泊松、连续时间马氏链 & = 时间连续、状态离散 \end{aligned} \right. ====

1.2 Brown运动

Brown运动是特殊的马氏过程(时间、状态均连续),具体定义如下。
若随机过程 { W ( t ) , t ≥ 0 } \{W(t),t\geq 0\} {W(t),t0}满足以下三个条件:
1) W ( 0 ) = 0 W(0)=0 W(0)=0
2) 平稳性:$\forall0<s<t,W(t)-W(s)~ N(0,t-s) $
3) 独立增量性: W ( t n ) − W ( t n − 1 ) , W ( t n ) − W ( t n − 1 ) , ⋯   , W ( t 2 ) − W ( t 1 ) , W ( t 1 ) W(t_n)-W(t_{n-1}),W(t_n)-W(t_{n-1}),\cdots,W(t_2)-W(t_{1}),W(t_1) W(tn)W(tn1),W(tn)W(tn1),,W(t2)W(t1),W(t1)之间相互独立
则称随机过程 { W ( t ) , t ≥ 0 } \{W(t),t\geq 0\} {W(t),t0}为布朗运动

  • 布朗运动又称维纳运动
  • 几何布朗运动: d S t = u S t d t + σ S t d W t dS_{t}=uS_{t}dt+\sigma S_tdW_{t} dSt=uStdt+σStdWt

二、二次变差

  • f ( t ) f(t) f(t)的二次变差
    任意给定 [ 0 , T ] [0,T] [0,T]的划分 Π : 0 = t 0 < t 1 < ⋯ < t N = T \Pi:0=t_0<t_1<\cdots<t_N=T Π:0=t0<t1<<tN=T,则对于任意连续函数 f ( t ) f(t) f(t) f ( t ) f(t) f(t)的二次变差定义为: Q Π = ∑ i = 0 N − 1 [ f ( t i + 1 ) − f ( t i ) ] 2 Q_{\Pi}=\sum_{i=0}^{N-1} [f(t_{i+1})-f(t_{i})]^2 QΠ=i=0N1[f(ti+1)f(ti)]2
  • 性质: lim ⁡ Δ → + 0 Q Π = 0 \lim_{\Delta \to+0}Q_{\Pi}=0 limΔ+0QΠ=0,其中 Δ = m a x i ∈ [ 0 , N ] ∣ t i + 1 , t i ∣ \Delta = \mathop{max}\limits_{i\in[0,N]} |t_{i+1},t_{i}| Δ=i[0,N]maxti+1,ti

proof: (中值定理) lim ⁡ Δ → + 0 Q Π = lim ⁡ Δ → + 0 ∑ i = 0 N − 1 [ f ′ ( ξ i ) ( t i + 1 − t i ) ] 2 ≤ m a x t ∈ [ 0 , T ] f ′ ( t ) ∑ i = 0 N − 1 ( t i + 1 − t i ) 2 ≤ m a x ∈ [ 0 , T ] f ′ ( t ) Δ T \lim\limits_{\Delta \to+0}Q_{\Pi}=\lim\limits_{\Delta \to+0}\sum_{i=0}^{N-1} [ f^{'}(\xi_i)(t_{i+1}-t_{i})]^2\leq \mathop{max}\limits_{t \in [0,T]}f'(t)\sum_{i=0}^{N-1}(t_{i+1}-t_{i})^2\leq \mathop{max}\limits_{ \in [0,T]}f'(t)\Delta T Δ+0limQΠ=Δ+0limi=0N1[f(ξi)(ti+1ti)]2t[0,T]maxf(t)i=0N1(ti+1ti)2[0,T]maxf(t)ΔT

  • 思考:将 f ( t ) f(t) f(t)换为布朗运动 W ( t ) W(t) W(t)会如何?
    - W ( t ) W(t) W(t)连续但是处处不可微,中值定理失效
布朗运动 W ( t ) W(t) W(t)的二次变差性质:

任意给定 [ 0 , T ] [0,T] [0,T]的划分 Π : 0 = t 0 < t 1 < ⋯ < t N = T \Pi:0=t_0<t_1<\cdots<t_N=T Π:0=t0<t1<<tN=T,则对于任意连续函数 W ( t ) W(t) W(t) W ( t ) W(t) W(t)的二次变差 Q Π = ∑ i = 0 N − 1 [ f ( W i + 1 ) − W ( t i ) ] 2 Q_{\Pi}=\sum_{i=0}^{N-1} [f(W_{i+1})-W(t_{i})]^2 QΠ=i=0N1[f(Wi+1)W(ti)]2,有如下性质: Δ = m a x i ∈ [ 0 , N ] ∣ t i + 1 , t i ∣ \Delta = \mathop{max}\limits_{i\in[0,N]}|t_{i+1},t_{i}| Δ=i[0,N]maxti+1,ti

lim ⁡ Δ → + 0 Q Π = T \lim\limits_{\Delta \to+0}Q_{\Pi}=T Δ+0limQΠ=T (在 L 2 意 义 下 L_2意义下 L2)

proof: (独立同分布下的大数定理) 令 X = Q Π X=Q_{\Pi} X=QΠ,证 lim ⁡ Δ → 0 E ( X ) = 0 , lim ⁡ Δ → 0 V a r ( X ) = 0 \lim\limits_{\Delta \to 0}E(X)=0,\lim\limits_{\Delta \to 0}Var(X)=0 Δ0limE(X)=0,Δ0limVar(X)=0

  • 性质意义:不管划分多细,累计平方和永远为不为0,意味着布朗运动即使在很短时间内,波动都太频繁

  • 布朗运动二次变差的另一种形式
    d W t 2 = d t dW^2_t=dt dWt2=dt

proof: E ( d W t 2 ) = d t , V a r ( d W t 2 ) = 2 d t 2 E(dW^2_t)=dt,Var(dW^2_t)=2dt^2 E(dWt2)=dt,Var(dWt2)=2dt2

三、几何布朗运动

  • 标准布朗运动:满足三条性质, B ( 0 ) = 0 B(0)=0 B(0)=0,平稳性和独立增量性
  • 几何布朗运动
    设漂移项为 u t ut ut,尺度参数为 σ \sigma σ,则几何布朗运动定义为:
    X ( t ) = u t + σ W ( t ) X(t)=ut+\sigma W(t) X(t)=ut+σW(t),微分形式为 d X ( t ) = u d t + σ d W ( t ) dX(t)=udt+\sigma dW(t) dX(t)=udt+σdW(t)
  • PS: W ( t ) W(t) W(t)虽然处处不可为,但是 d W ( t ) dW(t) dW(t)仍有意义,表示布朗运动在无穷小时间间隔内的变化
  • 意义: X ( t ) X(t) X(t)可以时间 t t t变化有正有负,因而不能描述估价变动,但是可以描述收益率变动,收益率为股价的变化率
  • 用几何布朗运动刻画股价
    S ( t ) S(t) S(t)为股票价格,则 d S ( t ) dS(t) dS(t)为股价的变化量, d S ( t ) S ( t ) \frac{dS(t)}{S(t)} S(t)dS(t)表示收益率,若收益率符合几何布朗运动,即 d S ( t ) S ( t ) = u d ( t ) + σ d W ( t ) \frac{dS(t)}{S(t)}=ud(t)+\sigma dW(t) S(t)dS(t)=ud(t)+σdW(t),即 d S ( t ) = u S ( t ) d ( t ) + σ S ( t ) d W ( t ) dS(t)=uS(t)d(t)+\sigma S(t)dW(t) dS(t)=uS(t)d(t)+σS(t)dW(t),则称其为满足几何布朗运动的股价。
  • 为什么用几何布朗运动刻画股价?
  • 1.正态分布:股价连续复利收益率符合正态分布
  • 2.马氏过程:只需当前价格就可预测未来价格
  • 3.布朗运动处处不可微和二次变差不为0的性质,符合股价收益率在时间上存在转折尖点的特征

四、伊藤引理

对于金融衍生品,其价格是股价的函数。令 f ( W t ) f(W_t) f(Wt)为布朗运动 W t W_t Wt的平滑指数。由于布朗运动不可微性,古典积分求解 d f df df无效,此时便引入伊藤积分。

4.1伊藤积分基本关系式

Δ f = f ( W t + Δ W t ) = f ′ ( W t ) ( Δ W t ) + f ′ ′ ( W t ) 2 ! ( Δ W t ) 2 + f ′ ′ ′ ( W t ) 3 ! ( Δ W t ) 3 \Delta f=f(W_t+\Delta W_t)=f^{'}(W_t)(\Delta W_t)+\frac{f^{''}(W_t)}{2!}(\Delta W_t)^2+\frac{f^{'''}(W_t)}{3!}(\Delta W_t)^3 Δf=f(Wt+ΔWt)=f(Wt)(ΔWt)+2!f(Wt)(ΔWt)2+3!f(Wt)(ΔWt)3 Δ W t 2 {\Delta W_t}^2 ΔWt2二次变差下知道不趋于0,因而是不可忽略的,更有性质: d 2 W t = d t d^2W_t=d_t d2Wt=dt
⟹ \Longrightarrow d f = d f ( W t ) = f ′ ( W t ) d W t + 1 2 f ′ ′ ( W t ) d t df=df(W_t)=f^{'}(W_t)dW_t+\frac{1}{2}f^{''}(W_t)dt df=df(Wt)=f(Wt)dWt+21f(Wt)dt

  • 一般地,若 f = f ( x , t ) f=f(x,t) f=f(x,t),则 d f = ( ∂ f ∂ t + 1 2 ∂ 2 f ∂ x 2 ) d t + ∂ f ∂ x d W t df=(\frac{\partial f}{\partial t}+\frac{1}{2}\frac{\partial ^2f}{\partial x^2})dt+\frac{\partial f}{\partial x}dW_t df=(tf+21x22f)dt+xfdWt

proof 古典微分: d f = ∂ f ∂ t d t + ∂ f ∂ x d x df=\frac{\partial f}{\partial t}dt+\frac{\partial f}{\partial x}dx df=tfdt+xfdx
伊藤微分( x = W t x=W_t x=Wt): d f = ∂ f ∂ t + ∂ f ∂ x d W t + 1 2 ∂ 2 f ∂ x 2 d 2 W t = ( ∂ f ∂ t + 1 2 ∂ 2 f ∂ x 2 ) d t + ∂ f ∂ x d W t df=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x}dW_t+\frac{1}{2}\frac{\partial ^2f}{\partial x^2}d^2W_t=(\frac{\partial f}{\partial t}+\frac{1}{2}\frac{\partial ^2f}{\partial x^2})dt+\frac{\partial f}{\partial x}dW_t df=tf+xfdWt+21x22fd2Wt=(tf+21x22f)dt+xfdWt$

4.2伊藤引理一般形式

上述设 f = f ( X , t ) f=f(X,t) f=f(X,t)是X和t的函数,现在考虑 X ( t ) X(t) X(t)满足布朗运动,即 d X ( t ) = u d t + σ d W t dX(t)=udt+\sigma dW_t dX(t)=udt+σdWt。更一般的,令 a = a ( X ( t ) , t ) , b = b ( X ( t ) , t ) a=a(X(t),t),b=b(X(t),t) a=a(X(t),t),b=b(X(t),t),考虑伊藤过程 d X ( t ) = a ( X ( t ) , t ) d t + b ( X ( t ) , t ) d W t dX(t)=a(X(t),t)dt+b(X(t),t)dW_t dX(t)=a(X(t),t)dt+b(X(t),t)dWt,则有:
d f = ( ∂ f ∂ t + a ∂ f ∂ x + 1 2 b 2 ∂ 2 f ∂ x 2 ) d t + ( b ∂ f ∂ x ) d W t df=(\frac{\partial f}{\partial t}+a\frac{\partial f}{\partial x}+\frac{1}{2}b^2\frac{\partial ^2f}{\partial x^2})dt+(b\frac{\partial f}{\partial x})dW_t df=(tf+axf+21b2x22f)dt+(bxf)dWt

proof d f = d f ( x , t ) = ∂ f ∂ t d t + ∂ f ∂ x d x + 1 2 ∂ 2 f ∂ x 2 d 2 x df=df(x,t)=\frac{\partial f}{\partial t}dt+\frac{\partial f}{\partial x}dx+\frac{1}{2}\frac{\partial^2f}{\partial x^2}d^2x df=df(x,t)=tfdt+xfdx+21x22fd2x又因为 d x ( t ) = a ( x ( t ) , t ) d t + b ( x s ( t ) , t ) d W t dx(t)=a(x(t),t)dt+b(xs(t),t)dW_t dx(t)=a(x(t),t)dt+b(xs(t),t)dWt,因此 d 2 ( x ) = [ a 2 d 2 t + 2 a b ( d W t d t ) ] + b 2 d 2 W t ≈ b 2 d t d^2(x)=[a^2d^2t+2ab(dW_tdt)]+b^2d^2W_t \approx b^2dt d2(x)=[a2d2t+2ab(dWtdt)]+b2d2Wtb2dt(前一项两项都是 d t dt dt的高阶)。从而有 d f = ∂ f ∂ t d t + ∂ f ∂ x ( a d t + b d W t + 1 2 b 2 ∂ 2 f ∂ x 2 ) d t = ( ∂ f ∂ t + a ∂ f ∂ x + 1 2 b 2 ∂ 2 f ∂ x 2 ) d t s + b ∂ f ∂ x d W t df=\frac{\partial f}{\partial t}dt+\frac{\partial f}{\partial x}(adt+bdW_t+\frac{1}{2}b^2\frac{\partial^2f}{\partial x^2})dt=(\frac{\partial f}{\partial t}+a\frac{\partial f}{\partial x}+\frac{1}{2}b^2\frac{\partial^2f}{\partial x^2})dts+b\frac{\partial f}{\partial x}dW_t df=tfdt+xf(adt+bdWt+21b2x22f)dt=(tf+axf+21b2x22f)dts+bxfdWt

4.3伊藤公式( X ( t ) = S t X(t)=S_t X(t)=St)

S t = X ( t ) , d S t = u ( S t , t ) d t + σ ( S t , t ) d W t S_t=X(t),dS_t=u(S_t,t)dt+\sigma (S_t,t)dW_t St=X(t),dSt=u(St,t)dt+σ(St,t)dWt,设 V t = f ( S t , t ) V_t=f(S_t,t) Vt=f(St,t)
⟹ \Longrightarrow d V t = ( ∂ V ∂ t + u ∂ V ∂ S + 1 2 σ 2 ∂ 2 V ∂ S 2 ) d t + σ ∂ V ∂ S d W t dV_t=(\frac{\partial V}{\partial t}+u\frac{\partial V}{\partial S}+\frac{1}{2}\sigma ^2\frac{\partial ^2V}{\partial S^2})dt+\sigma \frac{\partial V}{\partial S}dW_t dVt=(tV+uSV+21σ2S22V)dt+σSVdWt

4.4伊藤小定理

X t , Y t X_t,Y_t Xt,Yt满足 d X t = u 1 d t + σ 1 d t dX_t=u1dt+\sigma_1dt dXt=u1dt+σ1dt, d Y t = u 1 d t + σ 1 d t dY_t=u1dt+\sigma_1dt dYt=u1dt+σ1dt,则:
{ d ( X t Y t ) = X t d Y t + Y t d X t + σ 1 σ 2 Y t d ( X t T t ) = Y t d X t − X t d Y t Y t 2 + σ 2 2 X t − σ 1 σ 2 Y t Y t 3 \left\{ \begin{aligned} d(X_tY_t)&=X_tdY_t+Y_tdX_t+\sigma_1\sigma_2Y_t \\ d(\frac{X_t}{T_t})& =\frac{Y_tdX_t-X_tdY_t}{Y^2_t}+\frac{\sigma^2_2X_t-\sigma _1\sigma _2Y_t}{Y^3_t}\\ \end{aligned} \right. d(XtYt)d(TtXt)=XtdYt+YtdXt+σ1σ2Yt=Yt2YtdXtXtdYt+Yt3σ22Xtσ1σ2Yt

  • 2
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值