钻速预测内容概述
- 数据预处理研究—根据拿到的数据,探究该过程中的数据规律,分析其在真实情况下的实际意义以及对转速预测的意义
- 石油钻井数据离群点的分析
- 使用机器学习算法对机械转速预测与优化的研究
标题钻速优化相关理论的研究
实现钻井速度优化的首要任务就是分析钻井过程各个参数对钻井速度的影响,但是钻井过程是一个受众多参数影响的复杂过程,根据参数性质可以将参数分为两类:可控参数(可以人为调配的因素包括钻压、转速、泵压、排量、钻井液相关性质等参数)和不可控参数(人为调配控制的因素)。
可控参数分为:机械参数(钻压、转速),钻井液参数,和水利参数(排量、泵压)
传统的钻速优化主要有以下两种方法:
1)通过分析钻井过程中各个钻井控制参数对钻进速度的影响,建立钻井控制参数和钻进速度之间的多元控制方程,进而通过最优化理论求解多元最优值。
2)对钻井控制参数中的各个类别分别分析其对钻进速度的影响,建立单个参数与钻进速度之间的一元或二元控制方程。然后求解得到单个控制参数情况下的最优值,最后尝试将各个单个最优控制参数进行相互配合,期望对钻进速度进行优化。
机器学习一般过程的研究
机器学习的问题可以分为监督学习和无监督学习两大类。进一步,根据不同的问题类型,监督学习可以分为回归与分类两大类,回归和分类问题最大的区别通常在于输出,回归问题的输出通常是连续值,而分类问题的输出则大多是取值有限的离散值。无监督学习中最典型的代表则是聚类。对于聚类,则是通过训练,将训练集中的数据聚成几个“簇”,相同簇中的数据可能蕴含着某种潜在的、不易被发觉的相似性。