三维重建
文章平均质量分 93
关于三维重建方向的探索
tzc_fly
2017-2021:华中科技大学本科,2021-至今:中山大学博士
展开
-
神经辐射场的几何编辑CVPR2022
隐式神经渲染,特别是神经辐射场(NeRF),在场景的新视图合成中显示出巨大潜力。然而,当前基于NeRF的方法无法使用户在场景中执行用户控制的形状变形(user-controlled shape deformation)。虽然现有的工作已经提出了一些根据用户的约束(user’s constraints)修改辐射场的方法,但修改仅限于颜色编辑或对象的平移和旋转。在本文中,我们提出了一种方法,允许用户对场景的隐式表示执行可控的形状变形,并合成编辑后场景的新视图图像,并且无需重新训练Nerf。原创 2022-09-12 17:15:23 · 1738 阅读 · 0 评论 -
概述:穿衣人物的动画重建CVPR2020
在本文中,提出了一种新的端到端框架ARCH(服装人体的动画重建,Animatable Reconstruction of Clothed Humans),用于从单目图像精确重建可以动画的3D服装人体。现有的三维人体数字化方法难以处理姿势变化和细节恢复。此外,它们不会生成可动画的模型。相比之下,ARCH是一种可学习的姿势感知模型,可以从单个RGB图像生成详细的3D有衣着人体。...原创 2022-08-17 21:59:42 · 650 阅读 · 0 评论 -
NeRF数据预处理概述
通过COLMAP可以得到场景的稀疏重建结果,其输出文件包括相机内参,相机外参和3D点的信息,然后进一步利用LLFF开源代码中的imgs2poses文件将内外参整合到一个文件poses_boudns.npy中,假设该场景有。首先,我们在像素坐标下进行网格点采样,得到特定分辨率图像的各个像素点坐标。注意NeRF中所说的观察方向,严格来说,是相机连接某个像素的方向,因为我们要沿着这个方向去渲染得到像素的值。像素坐标到相机坐标的变换属于投影变换的逆变换,即2D点到3D的变化,即我们需要根据像素点的坐标。...原创 2022-08-12 16:55:38 · 1861 阅读 · 2 评论 -
用于视觉语言导航的自监督三维语义表示学习
在视觉语言导航任务中,embodied agent遵循语言指令并导航到指定目标位置。它在许多实际场景中都很重要,并引起了计算机视觉和机器人领域的广泛关注。然而,现有的大多数工作仅使用RGB图像,而忽略了场景的三维语义信息。为此,我们开发了一种新的自监督训练框架,将体素级(voxel-level)三维语义重建编码为三维语义表示。具体而言,region query任务被设计为pretext任务,预测特定3D区域中特定类别的对象的存在或不存在。...原创 2022-08-06 16:38:13 · 1061 阅读 · 1 评论 -
Pixel2Mesh从单个RGB图像生成三维网格ECCV2018
我们提出了一种端到端的深度学习架构,该架构从单个彩色图像生成三维形状(格式为triangularmesh,三角网格)。受深度神经网络性质的限制,以前的方法通常在体素或点云中表示三维形状,将其转换为更易于使用的mesh是非常重要的。与现有方法不同,我们的网络在GraphNN中表示三维网格,并通过逐步变形的椭球来生成正确的几何体(利用从输入图像中提取的特征)。我们采用从粗到精的策略,使整个变形过程稳定,并定义各种与网格相关的损失,以捕捉不同级别的特征,以确保重建高精度的三维几何体。httpshttps。....原创 2022-07-23 15:45:27 · 2483 阅读 · 0 评论 -
用于高清人物重建的像素对齐隐函数ICCV2019
Implicit Function 是一个用来表达物体表面的函数,其形式如:f(X)=0f(X)=0f(X)=0,其中,XXX表示空间中的任意一个点,比如想要表示空间中一个球心在原点,半径为rrr的球面,隐函数为:f(X)=x2+y2+z2−r2=0f(X)=x^{2}+y^{2}+z^{2}-r^{2}=0f(X)=x2+y2+z2−r2=0当X=(x,y,z)X=(x,y,z)X=(x,y,z)满足f(X)=0f(X)=0f(X)=0时,该点在球面上;当X=(x,y,z)X=(x,y,z)X=(x,y原创 2022-07-11 04:39:06 · 3589 阅读 · 0 评论 -
Mip-NeRF:抗混叠的多尺度神经辐射场ICCV2021
数据采集时,如果采样频率不满足奈奎斯特采样定理,可能会导致采样后的信号存在混叠。当采样频率设置不合理时,即采样频率低于2倍的信号频率时,会导致原本的高频信号被采样成低频信号。如下图所示,红色信号是原始的高频信号,但是由于采样频率不满足采样定理的要求,导致实际采样点如图中蓝色实心点所示,将这些蓝色实际采样点连成曲线,可以明显地看出这是一个低频信号。对连续信号进行等时间采样时,如果采样频率不满足采样定理,采样后的信号频率就会发生混叠,也就是高频信号被混叠成了低频信号。对于图像,图像的高频信息即灰度变化陡峭的原创 2022-06-22 22:44:25 · 8895 阅读 · 3 评论 -
NeRF神经辐射场ECCV2020
渲染可以看作:将三维场景投影到像素图像。对于同一个三维场景,在不同视角下,渲染的结果是不同的。当固定在某个位置的相机或者人眼在看三维场景时,场景中的一些点是不在相机光线上的,我们描述这个点的位置可以使用场景下的绝对位置(x,y,z)(x,y,z)(x,y,z),为了得到渲染的合理结果(该位置处相机的成像),还需要知道相机光线和该点的关系,比如观察方向(θ,φ)(θ,φ)(θ,φ):比如上图人眼或相机固定,光线为黑色实线,点G与相机的关系即为(θ,ϕ)(\theta,\phi)(θ,ϕ)。场景中某个点的渲原创 2022-06-08 23:23:22 · 7036 阅读 · 4 评论 -
三维重建基础
低频信息指的是颜色缓慢变化,代表着连续渐变的一块区域,这部分为低频信息。对于一副图像来说,除去高频就是低频,也就是边缘以内的内容为低频,而边缘内的内容就是图像的大部分信息,即图像的大致概貌和轮廓,是图像的近似信息。反之,图像边缘的灰度值变化快,就对应着高频。图像的细节处也就是属于灰度值急剧变化的区域,正是因为灰度值的急剧变化,才会出现细节。另外对于噪声,在一个像素所在的位置,之所以是噪点,是因为它与正常的点颜色不一样了,也就是说该像素点灰度值明显不一样,所以是高频部分。通常,图像的低频是图像中对象的大致概况原创 2022-06-07 17:25:35 · 2616 阅读 · 0 评论