图神经网络
文章平均质量分 91
由于图结构的强大表现力,用机器学习方法分析图的研究越来越受到重视。图神经网络是一类基于深度学习的处理图域信息的方法。
tzc_fly
2017-2021:华中科技大学本科,2021-至今:中山大学博士
展开
-
等变GNN
等变GNN原创 2024-04-02 14:39:20 · 1084 阅读 · 0 评论 -
实现泛化,强大,有规模的Graph Transformer
GraphGPS原创 2024-04-02 12:13:58 · 608 阅读 · 0 评论 -
Graph上的Transformer:Graphormer
Graphomer原创 2024-04-01 16:56:29 · 1431 阅读 · 0 评论 -
知识图谱(6)基于KG构建问答系统
知识图谱(6)基于KG的QA原创 2023-09-26 14:42:22 · 437 阅读 · 0 评论 -
知识图谱(5)知识表示
知识图谱(5)知识表示原创 2023-09-25 22:11:59 · 138 阅读 · 0 评论 -
知识图谱(4)图算法
知识图谱(4)图算法原创 2023-09-20 16:56:17 · 881 阅读 · 0 评论 -
知识图谱(3)关系抽取
知识图谱(3)关系抽取原创 2023-09-13 19:53:26 · 278 阅读 · 0 评论 -
知识图谱(2)词汇挖掘与实体识别
知识图谱(2)词汇挖掘与实体识别原创 2023-09-06 16:15:52 · 585 阅读 · 0 评论 -
知识图谱(1)知识存储与检索
知识图谱(1)知识存储与检索原创 2023-08-30 11:09:01 · 781 阅读 · 0 评论 -
基于算法概念的可解释推理AAAI2022(用于组合优化问题)
最近对图神经网络(GNN)模型的研究成功地将GNN应用于经典图算法(classical graph algorithms)和组合优化问题(combinatorial optimisation problems)。这有许多好处,例如允许在不满足前提条件时应用算法,或者在没有足够的训练数据或无法生成足够的训练数据时重用(reusing)学习模型。不幸的是,这些方法的一个主要障碍是缺乏可解释性,因为GNN是无法直接解释的黑盒模型。在这项工作中,我们通过将基于概念解释方面的现有工作应用于GNN模型来解决这一局限性。原创 2022-06-05 16:51:40 · 1037 阅读 · 0 评论 -
用于图卷积神经网络的可解释性方法CVPR2019
目录激励反向传播Excitation Backprop(ECCV2016)摘要1.Introduction2.Related Work2.1.Interpretability2.2.GCNNs3.Method3.1.Explainability for CNNs3.2.Graph Convolutional Neural Networks3.3.Explainability for Graph Convolutional Neural Networks4.Experiments4.1.视觉场景解释4.2..原创 2022-06-01 16:29:11 · 978 阅读 · 0 评论 -
第八课.TPAMI2021年多篇GNN相关工作
目录Topology-Aware Graph Pooling NetworksGraph Neural Networks with Convolutional ARMA FiltersLearning Graph Convolutional Networks for Multi-Label Recognition and Applications补充内容DeepWalk(KDD2014)GraphSAGE(nips2017)本次内容选择了多篇TPAMI关于GNN的工作:Topology-Aware G原创 2022-05-26 21:05:27 · 991 阅读 · 0 评论 -
第七课.有向图卷积网络
有向图卷积网络(Directed Graph Convolutional Network),源于2020年的论文"Directed Graph Convolutional Network";初次了解会给人一种感觉:这可能就是在GCN上的小修改,但其实背后暗藏重大创新,在2018年出现GCN前,我们就已经知道,Graph分为有向与无向,不管是什么样的图,总能用邻接矩阵表达,也能得到度矩阵,在该论文出现之前,我们其实完全可以认为用GCN就能胜任有向或无向图数据;但经过论文的描述,事实证明作者的想法确实有所道理;原创 2021-03-22 11:22:48 · 7710 阅读 · 11 评论 -
第六课.GNN的可解释性
目录CNN的可解释性深度学习中的可解释性CNN可解释性的研究CNN的可解释性深度学习中的可解释性Interpretability of CNN 即CNN的可解释性,研究者们希望看到CNN每一层所做的事情,截止目前,人们已经逐渐向CNN的可解释研究靠近,但没有完全解决;类似地,自然语言处理的重要模型RNN也存在没有完全解决可解释性的问题;深度学习是基于数据而驱动的,对比传统的算法,往往是基于各种判断条件,再依次执行计算;深度学习可以认为是数据归纳统计的结果,让机器在海量数据中学习分布,以概率形式输出结果原创 2021-03-21 17:48:24 · 2298 阅读 · 1 评论 -
第五课.可变图结构下的归纳式学习&图注意力
目录图采样聚合网络Inductive and Transductive LearningGraphSAGE算法流程GraphSAGE与InductiveLearning的关系损失函数注意力机制图采样聚合网络Inductive and Transductive LearningInductive Learning 直译为归纳式学习,归纳是从观察到的训练案例学习到一般规则,然后应用到测试用例中;归纳式学习定义为从现有数据中学习知识,然后把知识用于以前从没见过的数据上,比如图像识别,语义分割,目标检测等模型原创 2021-03-19 21:18:09 · 1142 阅读 · 1 评论 -
第四课.图时空网络
目录行为识别与分析时空图卷积网络行为识别与分析行为识别与分析即 Human Activity Recognition 或 Human Behavior Recognition,简称HAR或HBR, HAR 旨在从未知视频序列中自动检测和识别某个对象的动作;分析和理解一个人的行为从根本上来说是一种广泛需要的应用,如视频索引、生物识别、监视和安全(比如无人超市);下面分别是10个短视频,通过网络可以得到这10个视频对应的行为类型:一般,行为识别分析的框架为:框架反映了,获取到数据后,再进行预处理,提原创 2021-03-17 20:01:50 · 2743 阅读 · 0 评论 -
第三课.图变分自编码器&图对抗生成网络
目录自编码器与变分自编码器自编码器变分自编码器图变分自编码器自编码器与变分自编码器自编码器自编码器即 Auto Encoders,简称 AE,假设存在一个神经网络:容易发现,该神经网络的输入与输出维度相同,隐藏层的张量维度远小于输入或输出数据,通常目标是用输入还原输出,应使两者相接近,所以有损失函数 L(x,x^)L(x,\widehat{x})L(x,x),参数前者是输入,后者是网络输出;可以看出,自编码器是一种无监督学习,在这种技术中,利用神经网络进行表征学习;理想的自编码器模型应具备如下性原创 2021-03-15 21:31:53 · 3922 阅读 · 1 评论 -
第二课.图卷积神经网络
目录卷积神经网络图卷积神经网络GNN数据集图的表示GCNGNN的基准化:Benchmarking Graph Neural Networks卷积神经网络在计算机视觉中,卷积网络是一种高效的局部特征提取工具,一个卷积层包含多个filter,每个filter的kernel数量等于输入张量的通道数,输出张量的通道数量就是filter的个数,一个filter中的各个kernel是不同的;可以理解为不同的filter提取不同的局部特征,filter内的kernel不同是为了获取输入张量上不同通道的局部信息,最后原创 2021-01-29 18:12:20 · 1719 阅读 · 0 评论 -
第一课.图与图神经网络
图(Graph)和图像(Image)是两个事物,图是一种数据结构,由节点(nodes)和边(edges)组成,边代表了节点之间的关系;图GGG可用序偶描述:G=(V,E)G=(V,E)G=(V,E)其中,V={v1,v2,...,vn}V=\left\{v_{1},v_{2},...,v_{n} \right\}V={v1,v2,...,vn}代表vertices(顶点);EEE代表边,如果是有向边,则用有序偶表示:e=<u,v>e=<u,v>e=<u,v>,u原创 2021-01-27 21:36:46 · 651 阅读 · 0 评论