放大电路的分析方法(以共射放大电路为例、交流通路、直流通路、三极管等效电路及其如何等效的)

本文详细解析了三极管放大电路的分析方法,包括直流通路和交流通路的概念,以及如何通过图解法和等效分析法找到静态工作点和计算放大倍数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

放大电路的分析方法

前面几节讲的三极管放大电路中了解到,在放大电路中我们比较关注的是放大电路的Ri输入电阻,Ro输出电阻,以及放大系数,这一节中就来说以下我们如何分析放大电路中这些参数。

三极管不是一个线性元件,我们所说的三极管的放大常常是对交流信号的放大,所以前面也说他是一个电源控制器,所以就要加直流以及交流信号。对比之前讲过的,既加直流又加交流的就是二极管,如下图。
二极管的微变等效电路图
从上图可以看出来,想要分析二极管在动态过程中电流的变化,要先确定Q的位置,不同的Q点,相同的交流加上去会有不同的变化,Q点就是由直流分析出来的,所以类比二极管,三级管的输入特性曲线和二极管的相同,三极管放大电路的分析也是先分析直流通路,找到静态工作点,再分析交流动态电路。

直流通路
放大电路中,直流流过的通路,所以有以下几点。
Ui=0
电容断路
电感短路
交流通路
直流源置零
电容短路

通过以上两点就可以得到下面几个简单放大电路的直流通路和交流通路。
基本共射放大电路的直流通路和交流通路
直接耦合共射放大电路及其直流通路和交流通路
阻容耦合共射放大电路的直流通路和交流通路
上面的直流通路很好理解,但是交流通路理解起来可能有一些困难,我们来举一个阻容耦合共射放大电路例子,一步步变换一下,如下图。
阻容耦合共射放大电路交流通路的变换过程
放大电路的分析
基本共射放大电路
我们这里分析一个最简单的基本共射放大电路。先使用图解法对其进行分析。
利用图解法分析优点在于可以很好的进行理解,缺点就是比较麻烦,下面进行分析。
我们手中已有的两条曲线。
三极管的输入特性曲线与输出特性曲线如下图。
三级挂输入特性曲线
三极管的输入特性曲线
先看输入特性曲线,我们只取其中一条。我们已知这条曲线,想要找出Q点就要做出另外一条曲线,直流通路中的IB=(VBB-UBE)/RB,根据这个公式就可以在图中做出另外一条曲线,如下图。
输入静态点
找到了输入的静态工作点之后,再加交流信号ΔUi加上去。如下图。
加交流信号
斜着平行的虚线就是Ui加上去之后,竖着的两条曲线就是ΔUBE,UBE的变化必然会引起iB的变化,所以横着的两条曲线就是iB的变化。那怎么将输入特性曲线与输出特性曲线联系起来呢?看上面的图,斜着的实线是直流的存在做出来的,相交点为Q,Q点的横坐标为UBEQ,纵坐标为IBQ,三极管工作在放大状态,iC受iB的控制,所以要在输出特性曲线上寻找IBQ。同样的在输出部分可得到输出的方程,iC=(VCC-UCE)/Rc,在输出特性曲线上做出这条线如下图。
输出特性曲线
找到了Q点之后再把变化的IB拿到输出特性曲线上面,就得到了变化的UCE,最后把得到的UCE和前面的Ui一比,就得到的这个共射放大电路的放大倍数。如下图
输出曲线图解
整个过程如下
图解法求放大倍数
实际计算与分析肯定不能使用图解法,太过于麻烦,使用图解法只是为了进一步对三极管电路进行理解,便于实际计算过程中进行分析。所以图解法分析完毕之后要进行计算分析。

已知ic=βib,但是有一个问题就是iB与UCE之间不是一个线性的关系,ib与UCE的关系就是三极管的输入特性曲线,但是ib与UCE的关系虽然不是线性的,但是Δib与ΔUCE之间的关系却是近似线性的,如果能找到这个变化的关系就可以进行求解了。所以定义Rbe=ΔUBE/ΔiB,Rbe其实就是上面输入特性曲线Q点与虚线交点连线斜率的倒数。 所以三极管的基极与射极之间就可以等效为一个电阻Rbe。注意这里所说的情况是交流信号情况之下,就可以对三极管进行一个等效。如下图。
三极管等效模型
如何承认的rbe?因为直流的存在将坐标原点拖到了Q点上,所以这也是为什么在交流通路中直流电源置零,当坐标原点托到了Q点上的时候,我们只关心ΔUCE与Δib之间的变化,此时他就是一个线性的了。

等效分析法
一、直流通路
1.Q点
2.求rbe=rbb+(1+β)UT/IEQ(rbb是基区体电阻,IEQ=(1+β)IBQ)
二、交流通路
1.做出交流通路
2.三极管等效

举个例子:如下
阻容耦合放大电路分析
补充以下关于各种i的说明。
补充电流表示
直流没有向量。

好几天没有写了,最近天天加班到三四点,也是疲惫不堪,可是做事情还是不能拖延,今日事今日毕,我于今年毕业,自己进行创业,已经坚持了小半年,收获甚微,每日身心俱疲,无限焦虑,只觉解决焦虑的最有效的办法就是不断的提升自己。2020年6月28日20点52分,觉得写的还行就点个赞吧,觉得写的不行请留下你宝贵的建议。

对于使用bitmap进行去重的优化,有以下几个方面可以考虑: 1. 选择合适的bitmap实现:可以根据需求选择不同的bitmap实现方式,比如使用位图数组、位图集合或者布隆过滤器等。不同的实现方式在空间占用和查询性能方面有所差异,根据具体场景选择合适的实现方式。 2. 优化bitmap的内存占用:如果需要去重的数据量非常大,可以考虑使用压缩算法来减少bitmap的内存占用。如,Roaring Bitmaps是一种高效的压缩位图实现,可以显著减少内存消耗。 3. 并行处理:如果去重的数据量较大,可以考虑并行处理来加速去重过程。可以将数据分成多个部分,每个部分使用一个bitmap进行去重,然后将结果合并。这样可以利用多核处理器的并行能力,提高去重的效率。 4. 预处理和过滤:如果已知数据集的特点,可以通过预处理和过滤操作来减少需要进行去重的数据量。如,可以先进行一些简单的过滤操作,如基于规则或者前置条件进行筛选,将无需去重的数据排除掉,从而减少bitmap的大小和查询开销。 5. 内存优化:在内存使用方面,可以考虑使用位运算等技巧来减少内存占用。如,可以使用字节存储多个位信息,或者利用位运算来进行高效的位操作。 需要根据具体情况选择合适的优化策略,综合考虑时间复杂度、空间复杂度和实际需求来进行优化。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值