tensorflow_learning
schwamaths
这个作者很懒,什么都没留下…
展开
-
Datawhale 零基础入门CV - Task 01 赛题理解
1 赛题理解赛题名称:零基础入门CV之街道字符识别赛题目标:通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。为了简化赛题难度,赛题数据采用公开数据集SVHN,因此大家可以选择很多相应的paper作为思路参考。1.1 学习目标理解赛题背景和赛题数据完成赛题报名和数据下载,理解赛题的解题思路1.2 赛题数据赛题以街道字符为为赛题数据,数据集报原创 2020-05-20 22:11:06 · 142 阅读 · 0 评论 -
Task03 彩色空间互转
3.1 简介图像彩色空间互转在图像处理中应用非常广泛,而且很多算法只对灰度图有效;另外,相比RGB,其他颜色空间(比如HSV、HSI)更具可分离性和可操作性,所以很多图像算法需要将图像从RGB转为其他颜色空间,所以图像彩色互转是十分重要和关键的。3.2 学习目标了解相关颜色空间的基础知识理解彩色空间互转的理论掌握OpenCV框架下颜色空间互转API的使用3.3 内容介绍1.相关颜...翻译 2020-04-25 23:00:26 · 165 阅读 · 0 评论 -
Task01 图像插值算法
Datawhale 计算机视觉基础-图像处理(上)-Task01 OpenCV框架与图像插值算法1.1 简介 在图像处理中,平移变换、旋转变换以及放缩变换是一些基础且常用的操作。这些几何变换并不改变图象的象素值,只是在图象平面上进行象素的重新排列。在一幅输入图象[u,v][u,v][u,v]中,灰度值仅在整数位置上有定义。然而,输出图象[x,y]的灰度值一般由处在非整数坐标上的(u,v)(u...翻译 2020-04-21 16:06:19 · 227 阅读 · 0 评论 -
AI公益学习-梯度消失、梯度爆炸
1、梯度消失和梯度爆炸2、随机初始化模型参数2.1、pytorch的默认随机初始化随机初始化模型参数的方法有很多。在线性回归的简洁实现中,我们使用torch.nn.init.normal_()使模型net的权重参数采用正态分布的随机初始化方式。不过,PyTorch中nn.Module的模块参数都采取了较为合理的初始化策略(不同类型的layer具体采样的哪一种初始化方法的可参考源代码),因...原创 2020-02-15 21:41:32 · 169 阅读 · 0 评论 -
AI公益学习-过拟合、欠拟合及其解决方案
1、模型的选择1.1、验证数据集从严格意义上讲,测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。鉴于此,我们可以预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小部分作为...原创 2020-02-15 20:01:12 · 272 阅读 · 0 评论 -
AI公益深度学习-task02
文本预处理一段自然语言文本可以看作是一个离散时间序列,给定一个长度为 T 的词的序列 w1,w2,…,wT ,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:P(w1,w2,…,wT).本节我们介绍基于统计的语言模型,主要是 n 元语法( n -gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。语言模型假设序列 w1,w2,…,wT 中的每个词是依次生成的,我们有...原创 2020-02-14 21:38:10 · 105 阅读 · 0 评论 -
Ai公益深度学习
softmax的基本概念下面的连接是我自己记录的softmax和交叉熵的笔记。模型的训练和预测softmax丛林开始实现import torchvisionimport numpy as npimport syssys.path.append("/home/kesci/input")import d2lzh1981 as d2lprint(torch.__version__)...原创 2020-02-14 18:52:40 · 199 阅读 · 0 评论 -
pandas——相关系数函数corr()
计算DataFrame列之间的相关系数 a = np.arange(1,10).reshape(3,3) data = DataFrame(a,index=["a","b","c"],columns=["one","two","three"]) print(data) ''' one two three a 1 2 3...原创 2019-11-09 10:54:30 · 72784 阅读 · 1 评论 -
pandas——dataFrame
dataFrame一个简单的dataFrame如下:列索引DataFrame的列索引可以直接获取数据:两种方式:行索引loc可以获取多行数据,但是无法使用切片操作获取数据。单行数据获取使用切片操作会出现错误。iloc多行数据获取二维索引单行数据多行数据一点思考这里的true,我们可以得到这种 复制操作是一种赋值操作,被赋值变量所指向的地址一致。...原创 2019-11-09 08:14:48 · 147 阅读 · 0 评论 -
Image——Transfrom
Similarity Transform平移旋转公式如下:![在这里插入图片描述](https://img-blog.csdnimg.cn/20191017112442157.pnggetRotationMatrix2D函数**主要用于获取图像环绕某一点的旋转矩阵函数调用形式:Mat getRotationMatrix2D(Point2f center, double angle, ...原创 2019-10-17 21:51:28 · 256 阅读 · 0 评论 -
Opencv——Gmma矫正原理及实现
公式:A是常数,指数为Gamma。Gamma校正:出现Gamma矫正根本原因是人眼对亮度很高的灰度值变化不敏感。Gamma校正是一种重要的非线性变换,其是对输入图像灰度值进行指数变换,程序import cv2import numpy as npdef Gamma_adjust(img,Gamma): table = np.zeros(256, dtype=np.float...原创 2019-10-15 11:03:36 · 1245 阅读 · 0 评论 -
计算视觉的任务
图像分类(Image classification)给定一张输入图像,图像分类的任务是判断该图像属于哪类, 如果是多任务分类, 可以用于分类该图像包含哪个类别。所以该类任务的标注非常简单, 只需要标注图片的种类即可. 如果是多任务的, 只需要多标注几种图片是否包含某类物品即可;目标检测(Object localization)目标定位是在图像分类的基础上, 进一步判断图像中的目标具体在图像...原创 2019-10-12 22:52:34 · 103 阅读 · 0 评论 -
MAP(mean average precision)平均精度均值
precision(精确率)和recall(召回率)的计算 (模型预测为正样本,实际为正样本) (模型预测为负样本,实际为负样本) (模型预测为正样本,实际为负样本) (模型将预测为负样本,实际为正样本) 正确预测的正样本除以被判为正样本(正确判断为正样本的样本和误判为正样本的样本)的比例之和 正确预测的样本和所有正样本的比列...原创 2019-08-21 10:39:49 · 9360 阅读 · 0 评论 -
基于深度学习的目标检测算法综述
相比与传统检测方法,基于深度学习的目标检测算法其优势在于无需进行人工的特征设计、良好的特征表达能力以及优良的检测精度。基于深度学习的目标检测算法分类依据设计思想,主要分为两种:基于区域提名的目标检测算法(二阶检测算法)和基于端到端(end-to-end)的学习的目标检测算法(一阶检测算法)。二阶段检测算法:第一步:生成可能包含物体的候选区域(Region Proposal),第二步:对...原创 2019-08-20 12:35:15 · 2794 阅读 · 0 评论 -
使用tensorflow开源框架搭建一个简单的手写数字识别(3)————测试集
mnist_test.py#coding:utf-8import timeimport tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dataimport mnist_forwardimport mnist_backwardTEST_INTERVAL_SECS = 5def tes...原创 2019-03-26 21:24:15 · 163 阅读 · 0 评论 -
使用tensorflow开源框架构建一个手写数字识别项目(2)————反向传播
反向传播代码文件mnist_backward.pyimport tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dataimport mnist_forwardimport osBATCH_SIZE = 200LEARNING_RATE_BASE = 0.1LEARNING_RAT...原创 2019-03-25 21:12:30 · 179 阅读 · 0 评论 -
使用tensorflow开源框架构建一个手写数字识别项目的代码详解(1)——前向传播
当然在学习本课程之前,我们需要明白在TensorFlow的世界里,变量的定义和初始化是分开的,所有关于图变量的赋值和计算都要通过tf.Session的run来进行。想要将所有图变量进行集体初始化时应该使用tf.global_variables_initializer。而我们这篇文章进行的工作是定义前向传播。mnist_forward.py文件详情:import tensorflow as...原创 2019-03-24 23:37:40 · 272 阅读 · 0 评论