图像处理
schwamaths
这个作者很懒,什么都没留下…
展开
-
Datawhale 零基础入门CV - Task 05 模型集成
Datawhale 零基础入门CV赛事-Task5 模型集成在上一章我们学习了如何构建验证集,如何训练和验证。本章作为本次赛题学习的最后一章,将会讲解如何使用集成学习提高预测精度。5 模型集成本章讲解的知识点包括:集成学习方法、深度学习中的集成学习和结果后处理思路。5.1 学习目标学习集成学习方法以及交叉验证情况下的模型集成学会使用深度学习模型的集成学习5.2 集成学习方法在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boost转载 2020-06-02 23:37:00 · 121 阅读 · 0 评论 -
Datawhale 零基础入门CV - Task 04 模型训练与验证
Datawhale 零基础入门CV赛事-Task4 模型训练与验证在上一章节我们构建了一个简单的CNN进行训练,并可视化了训练过程中的误差损失和第一个字符预测准确率,但这些还远远不够。一个成熟合格的深度学习训练流程至少具备以下功能:在训练集上进行训练,并在验证集上进行验证;模型可以保存最优的权重,并读取权重;记录下训练集和验证集的精度,便于调参。4 模型训练与验证为此本章将从构建验证集、模型训练和验证、模型保存与加载和模型调参几个部分讲解,在部分小节中将会结合Pytorch代码进行讲解。4原创 2020-05-30 23:07:44 · 273 阅读 · 0 评论 -
Datawhale 零基础入门CV - Task 03 字符识别模型
Datawhale 零基础入门CV赛事-Task3 字符识别模型在前面的章节,我们讲解了赛题的背景知识和赛题数据的读取。本章开始构建一个字符识别模型,基于对赛题理解本章将构建一个定长多字符分类模型。3 字符识别模型本章将会讲解卷积神经网络(Convolutional Neural Network, CNN)的常见层,并从头搭建一个字符识别模型。3.1 学习目标学习CNN基础和原理使用Pytorch框架构建CNN模型,并完成训练3.2 CNN介绍卷积神经网络(简称CNN)是一类特殊的人工神原创 2020-05-26 22:46:51 · 178 阅读 · 0 评论 -
Datawhale 零基础入门CV - Task 02 数据读取与数据扩增
Task2 数据读取与数据扩增2 数据读取与数据扩增本章主要内容为数据读取、数据扩增方法和Pytorch读取赛题数据三个部分组成。2.1 学习目标学习Python和Pytorch中图像读取学会扩增方法和Pytorch读取赛题数据2.2 图像读取由于赛题数据是图像数据,赛题的任务是识别图像中的字符。因此我们首先需要完成对数据的读取操作,在Python中有很多库可以完成数据读取的操作,比较常见的有Pillow和OpenCV。2.2.1 PillowPillow是Python图像处理函式库(原创 2020-05-23 23:36:16 · 157 阅读 · 0 评论 -
Task06 边缘检测
6.1 简介6.1.1 什么是边缘?边缘是图像强度函数快速变化的地方6.1.2 如何检测边缘?为了检测边缘,我们需要检测图像中的不连续性,可以使用导数来检测不连续性。如上图所示,上图的第一幅图表示一张数字图片,我们对水平红线处进行求导,便可得到上图二中的关系,可以看到在边缘处有着较大的跳变。但是,导数也会受到噪声的影响,因此建议在求导数之前先对图像进行平滑处理(上图三)。但是,导数也...翻译 2020-05-01 23:54:02 · 367 阅读 · 0 评论 -
Task05. 阈值分割——二值化
Datawhale 计算机视觉基础-图像处理(上)-Task05 图像分割/二值化5.1 简介该部分的学习内容是对经典的阈值分割算法进行回顾,图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,...原创 2020-04-29 21:55:59 · 1137 阅读 · 0 评论 -
Task04 图像滤波
4.1 简介图像的实质是一种二维信号,滤波是信号处理中的一个重要概念。在图像处理中,滤波是一种非常常见的技术,它们的原理非常简单,但是其思想却十分值得借鉴,滤波是很多图像算法的前置步骤或基础,掌握图像滤波对理解卷积神经网络也有一定帮助。4.2 学习目标了解图像滤波的分类和基本概念理解均值滤波/方框滤波、高斯滤波的原理掌握OpenCV框架下滤波API的使用4.4 算法理论...翻译 2020-04-27 23:33:45 · 213 阅读 · 0 评论