AI
文章平均质量分 66
schwamaths
这个作者很懒,什么都没留下…
展开
-
TensorRT 系列 -转化问题中遇到的问题记录
网络的输出一直有问题,比如输出值一直是1.7515477e+37这种极大的数这个问题我一开始也不确定是什么问题,最后是在将图片数据格式转为np.float32解决的。原创 2022-05-19 15:18:08 · 445 阅读 · 0 评论 -
集成学习-Boosting
Boosting主要思想是通过多个模型去学习同一个数据集,从而得到多个简单的弱分类器模型,最后将这些模型组成一个性能十分强大的机器学习模型。Valiant 和Kearns提出“弱可学习”和“强可学习”的概念。同时,Schapire证明出,强可学习和弱可学习是等价的。也就是一个概念可强学习的充分必要条件是这个概念可弱学习。弱学习:识别错误率小于1/2(即准确率仅比随机猜测略高的学习算法)强学习:识别准确率很高并能在多项式时间内完成的学习算法大多数的boosting算法通过改变训练集的概率分布或者权原创 2021-08-29 23:46:39 · 271 阅读 · 0 评论 -
集成学习-stacking
Stacking集成算法是一个两层模型的集成,第一层含有多个基础分类器,把预测的结果(元特征)提供给第二层,而第二层的分类器通常是逻辑回归,将第一层分类器的结果当作特征做拟合输出预测结果。1、Blending集成学习算法Blending集成学习的流程:(1)将数据划分为训练集和测试集(test set),其中训练集需要再次划分为训练集(train set)和验证集(val set).(2)创建第一层的多个模型,这些模型可以是同质或者异质。(3)使用 train set训练步骤2中的多个模型,然后原创 2021-08-26 21:59:38 · 455 阅读 · 0 评论 -
集成学习-bagging
1、什么是bootstrap?在统计学中,Bootstrap从原始数据中抽取子集,然后分别求取各个子集的统计特征,最终将统计特征合并。每个子集的构成都是通过重采样(即又放回的)抽取生成的。2、bagging与bootstrap的区别?bootstrap是统计学上估计总体的统计特征的方法。而bagging的核心思路就是bootstrap。bagging对训练集有放回的取k个样本,组成一个子样本集合,重复这样的过程T次,得到T个大小为K的子样本集合。然后针对T个样本集合训练T个学习器,将最后得到的T个结果原创 2021-08-24 23:49:55 · 229 阅读 · 0 评论 -
集成学习-方差与偏差
1、偏差,方差?偏差是用训练数据集训练出的模型的输出的平均值与真实模型的输出值之间的差异。2、 偏差,方差,误差之间的关系?Error = Bias + Variance + Noise4、方差是岭回归与lasso回归的异同点?个人觉得岭回归和lasso回归都可以降低模型的复杂度,但是lasso回归由于只能在坐标轴上取值,所以其优化结果不如岭回归。5、降维前三维椭球,降维后是?降维后是二维的球形。主要是PCA降维主要是通过选取主要特征向量,能够很好进行降维。...原创 2021-08-22 23:06:20 · 161 阅读 · 0 评论 -
集成学习-基础数学模型回归
参考链接作业详情链接参考学习的教案链接1、最小二乘法的表达式:假设研究的问题有n个样本。X=(x1,x2,...,xn)TX=(x_1,x_2,...,x_n)^TX=(x1,x2,...,xn)TY=(y1,y2,...,yn)TY=(y_1,y_2,...,y_n)^TY=(y1,y2,...,yn)TL(W)=12(XW−Y)T(XW−Y)L(W)=\frac{1}{2}(XW-Y)^T(XW-Y)L(W)=21(XW−Y)T(XW−Y)2、极大似然估计和最小二乘法的关系原创 2021-08-19 23:44:56 · 120 阅读 · 0 评论 -
异常检测-高维异常
1、引言在实际场景中,很多数据集都是多维度的。随着维度的增加,数据空间的大小(体积)会以指数级别增长,使数据变得稀疏,这便是维度诅咒的难题。维度诅咒不止给异常检测带来了挑战,对距离的计算,聚类都带来了难题。例如基于邻近度的方法是在所有维度使用距离函数来定义局部性,但是,在高维空间中,所有点对的距离几乎都是相等的(距离集中),这使得一些基于距离的方法失效。在高维场景下,一个常用的方法是子空间方法。集成是子空间思想中常用的方法之一,可以有效提高数据挖掘算法精度。集成方法将多个算法或多个基检测器的输出结合起来原创 2021-01-24 23:29:58 · 271 阅读 · 0 评论 -
异常检测-基于相似度的方法
1、概述异常点,是一个数据对象,它显著不同于其他数据对象,与其他数据的分布较为显著的不同。而噪声数据是指被测量变量的随机误差或方差。一般而言,噪声在数据预处理中剔除的,减少对后续模型预估的影响,增加精度。异常点由于其分布不同其他数据的分布,所以需要对其进行检测。在基于相似度的方法中,主要思想是异常点的表现和正常点不同。2、基于距离的度量 基于距离的方法是一种常见的适用于各种数据域的异常检测算法,它基于最近邻距离来定义异常值。 此类方法不仅适用于多维数值数据,在其他许多领域,原创 2021-01-21 21:36:12 · 293 阅读 · 0 评论 -
异常检测-基于统计学的方法
1、概述统计学方法对数据的正常性做出假定。它们假定正常的数据对象由一个统计模型产生,而不遵守该模型的数据是异常点。统计学方法的有效性高度依赖于对给定数据所做的统计模型假定是否成立。异常检测的统计学方法的一般思想是:学习一个拟合给定数据集的生成模型,然后识别该模型低概率区域中的对象,把它们作为异常点。即利用统计学方法建立一个模型,然后考虑对象有多大可能符合该模型。根据如何指定和学习模型,异常检测的统计学方法可以划分为两个主要类型:参数方法和非参数方法。参数方法假定正常的数据对象被一个以Θ\Theta原创 2021-01-16 00:46:14 · 390 阅读 · 0 评论 -
异常检测-线性模型
1、2、数据可视化3、线性回归3.1、基于自变量与因变量的线性回归3.1.1、最小二乘法为了简单起见,这里我们一元线性回归为例:Y=∑i=1dai⋅Xi+ad+1Y=\sum_{i=1}^{d} a_{i} \cdot X_{i}+a_{d+1}Y=i=1∑dai⋅Xi+ad+1变量Y为因变量,也就是我们要预测的值;X1...XdX_{1}...X_{d}X1...Xd为一系列因变量,也就是输入值。系数a1...ad+1a_{1}...a_{d+1}a1...ad+1为要学习的原创 2021-01-15 23:55:30 · 376 阅读 · 0 评论 -
异常检测-概述
1、异常检测异常检测(Outlier Detection)是指识别出与正常数据不同的数据,与预期行为差异大的数据。这类数据往往是少数的。1.1、异常的类别点异常指少数个体实例异常,大多数个体实例正常,例如正常人和病人的健康数据指标上下文异常指的是在特定情境下个体实例是异常的,在其他情境下都是正常的,例如在特定时间下的温度突然上升或下降,在特定场景中的快速信用卡交易群体异常指的是在群体集合中的个体实例出现异常的情况,而该个体实例自身可能不是异常,例如社交网络中虚假账原创 2021-01-12 21:56:50 · 741 阅读 · 0 评论 -
Reinforcement learning DDPG 算法
DDPG起源对于这些连续的动作控制空间,Q-learning、DQN 等算法是没有办法处理的。在上面这个离散动作的场景下,比如说我输出上下或是停止这几个动作。有几个动作,神经网络就输出几个概率值,我们用 πθ(at∣st)\pi_\theta(a_t|s_t)πθ(at∣st)来表示这个随机性的策略。在连续的动作场景下,比如说我要输出这个机器人手臂弯曲的角度,这样子的一个动作,我们就输出一个具体的浮点数。我们用 μθ(st)\mu_{\theta}(s_t)μθ(st)来代表这个确定性的策略原创 2020-11-06 20:57:17 · 549 阅读 · 1 评论 -
Reinforcement Learning DQN 算法及 Actor-Critic 算法
1、Actor-Critic在 Actor-Critic 里面,最知名的方法就是 A3C(Asynchronous Advantage Actor-Critic)。如果去掉前面这个 Asynchronous,只有 Advantage Actor-Critic,就叫做 A2C。如果前面加了 Asynchronous,变成 Asynchronous Advantage Actor-Critic,就变成 A3C。那我们复习一下 policy gradient,在 policy gradient,我们在 up原创 2020-11-04 09:50:10 · 658 阅读 · 0 评论 -
Reinforcement Learning - 策略梯度和近端策略优化(PPO)
策略梯度(Policy Gradient)在 reinforcement learning 中有 3 个components,actor,environment,reward function。举例子说明让机器玩 video game 时,actor 做的事情就是去操控游戏的摇杆, 比如说向左、向右、开火等操作;environment 就是游戏的主机, 负责控制游戏的画面负责控制说,怪物要怎么移动, 你现在要看到什么画面等等;reward function 就是当你做什么事情,发生什么状况的原创 2020-10-27 21:50:29 · 1374 阅读 · 0 评论 -
reinforcement learning MDP与表格型方法
MDPMarkov Process** 马尔可夫性质:**下一个状态只与当前状态有关即未来的状态和过去的状态是独立,只和现在有关。马尔可夫性质是所有马尔可夫过程的基础。Markov chain根据图片的例子:从s1s_1s1开始:s1s_1s1有 0.1 的概率继续存活在s1s_1s1有 0.2 的概率转移到s2s_2s2有 0.7 的概率转移到s4s_4s4其实,上述的状态转移过程,我们可以使用状态转移矩阵来描述。Markov Reward Process(MRP)原创 2020-10-23 21:38:26 · 204 阅读 · 0 评论 -
reinforcement learning - 基础概述
强化学习讨论的问题是一个智能体(agent)怎么在一个复杂不确定的环境(environment)中取得奖励的最大值。强化学习研究的问题是 agent 跟环境交互,上图左边画的是一个 agent,agent 一直在跟环境进行交互。这个 agent 把它输出的动作给环境,环境取得这个动作过后,会进行到下一步,然后会把下一步的观测跟它上一步是否得到奖励返还给 agent。通过这样的交互过程会产生很多观测,agent 就是为了从这些观测之中学到能极大化奖励的策略。1、强化学习与监督学习的区别区别强原创 2020-10-20 20:49:30 · 1224 阅读 · 0 评论 -
Datawhale 零基础入门CV - Task 05 模型集成
Datawhale 零基础入门CV赛事-Task5 模型集成在上一章我们学习了如何构建验证集,如何训练和验证。本章作为本次赛题学习的最后一章,将会讲解如何使用集成学习提高预测精度。5 模型集成本章讲解的知识点包括:集成学习方法、深度学习中的集成学习和结果后处理思路。5.1 学习目标学习集成学习方法以及交叉验证情况下的模型集成学会使用深度学习模型的集成学习5.2 集成学习方法在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boost转载 2020-06-02 23:37:00 · 121 阅读 · 0 评论 -
Datawhale 零基础入门CV - Task 04 模型训练与验证
Datawhale 零基础入门CV赛事-Task4 模型训练与验证在上一章节我们构建了一个简单的CNN进行训练,并可视化了训练过程中的误差损失和第一个字符预测准确率,但这些还远远不够。一个成熟合格的深度学习训练流程至少具备以下功能:在训练集上进行训练,并在验证集上进行验证;模型可以保存最优的权重,并读取权重;记录下训练集和验证集的精度,便于调参。4 模型训练与验证为此本章将从构建验证集、模型训练和验证、模型保存与加载和模型调参几个部分讲解,在部分小节中将会结合Pytorch代码进行讲解。4原创 2020-05-30 23:07:44 · 273 阅读 · 0 评论 -
Datawhale 零基础入门CV - Task 03 字符识别模型
Datawhale 零基础入门CV赛事-Task3 字符识别模型在前面的章节,我们讲解了赛题的背景知识和赛题数据的读取。本章开始构建一个字符识别模型,基于对赛题理解本章将构建一个定长多字符分类模型。3 字符识别模型本章将会讲解卷积神经网络(Convolutional Neural Network, CNN)的常见层,并从头搭建一个字符识别模型。3.1 学习目标学习CNN基础和原理使用Pytorch框架构建CNN模型,并完成训练3.2 CNN介绍卷积神经网络(简称CNN)是一类特殊的人工神原创 2020-05-26 22:46:51 · 178 阅读 · 0 评论 -
Datawhale 零基础入门CV - Task 02 数据读取与数据扩增
Task2 数据读取与数据扩增2 数据读取与数据扩增本章主要内容为数据读取、数据扩增方法和Pytorch读取赛题数据三个部分组成。2.1 学习目标学习Python和Pytorch中图像读取学会扩增方法和Pytorch读取赛题数据2.2 图像读取由于赛题数据是图像数据,赛题的任务是识别图像中的字符。因此我们首先需要完成对数据的读取操作,在Python中有很多库可以完成数据读取的操作,比较常见的有Pillow和OpenCV。2.2.1 PillowPillow是Python图像处理函式库(原创 2020-05-23 23:36:16 · 157 阅读 · 0 评论 -
Datawhale 零基础入门CV - Task 01 赛题理解
1 赛题理解赛题名称:零基础入门CV之街道字符识别赛题目标:通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。为了简化赛题难度,赛题数据采用公开数据集SVHN,因此大家可以选择很多相应的paper作为思路参考。1.1 学习目标理解赛题背景和赛题数据完成赛题报名和数据下载,理解赛题的解题思路1.2 赛题数据赛题以街道字符为为赛题数据,数据集报原创 2020-05-20 22:11:06 · 142 阅读 · 0 评论 -
AI公益学习-Generative Adversarial Networks
1.Generative Adversarial Networks1.1、网络结构1.2、discriminator1.3、generator为了避免由于上面的损失函数存在梯度消失的问题,我们对调整损失函数。Many of the GANs applications are in the context of images. As a demonstration purpose...原创 2020-02-25 23:57:53 · 200 阅读 · 0 评论 -
AI公益学习第三次打卡
图像风格迁移批量归一化和残差网络目标检测和锚框原创 2020-02-25 21:54:45 · 203 阅读 · 1 评论 -
AI公益-图像风格迁移
1、样式迁移如果你是一位摄影爱好者,也许接触过滤镜。它能改变照片的颜色样式,从而使风景照更加锐利或者令人像更加美白。但一个滤镜通常只能改变照片的某个方面。如果要照片达到理想中的样式,经常需要尝试大量不同的组合,其复杂程度不亚于模型调参。在本节中,我们将介绍如何使用卷积神经网络自动将某图像中的样式应用在另一图像之上,即样式迁移(style transfer)[1]。这里我们需要两张输入图像,一张...原创 2020-02-25 21:52:38 · 834 阅读 · 0 评论 -
AI公益学习-目标检测和边界框
1.边界框2、锚框目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边缘从而更准确地预测目标的真实边界框(ground-truth bounding box)。不同的模型使用的区域采样方法可能不同。这里我们介绍其中的一种方法:它以每个像素为中心生成多个大小和宽高比(aspect ratio)不同的边界框。这些边界框被称为锚框(anchor ...原创 2020-02-25 18:17:10 · 597 阅读 · 0 评论 -
AI公益学习-优化与深度学习
1、深度学习中的优化1.1、优化优化方法目标:训练集损失函数值深度学习目标:测试集损失函数值(泛化性)1.2、优化在深度学习中的挑战局部最小值鞍点梯度消失1.2.1、鞍点x = np.arange(-2.0, 2.0, 0.1)fig, = d2l.plt.plot(x, x**3)fig.axes.annotate('saddle point', xy=(0, -0.2...原创 2020-02-25 16:39:09 · 152 阅读 · 0 评论 -
AI公益学习-批量归一化和残差网络
1、批量归一化(BatchNormalization)1.1、对输入的标准化(渐层模型)处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。标准化处理输入数据使各个特征的分布相近1.2、批量归一化(深度模型)利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。1.3、对全连接层做批量归一化位置:全连接层中的仿射变换和激活函...原创 2020-02-25 13:06:46 · 221 阅读 · 0 评论 -
计算智能笔记(四)
1、竞争学习神经网络一种无监督的学习方法。1.1、网络基础知识自组织网络结构属于层次型网络特点:都具有竞争层1.2、竞争学习出现的由来1.2.1、基本概念1.2.3、学习规则1.3、竞争学习原理...原创 2020-02-21 17:01:41 · 225 阅读 · 0 评论 -
计算智能笔记(三)
BP神经网络matlab例子clcP = [-1 -1 2 2 4; 0 5 0 5 7];T = [0 0 1 1 0];plotpv(P,T);pause% 建立一个神经网络,两个输入,隐层5,输出1个,隐层sigomid函数。输出层purelin函数net = newff(minmax(P),[5,1],{'tansig','purelin'},'trainrp');...原创 2020-02-21 08:19:35 · 148 阅读 · 0 评论 -
计算智能笔记(二)
1、感知器1.1、数学模型1.2、功能原创 2020-02-20 19:29:22 · 210 阅读 · 0 评论 -
AI公益学习第二次打卡
循环神经网络循环神经网络原创 2020-02-19 21:54:47 · 203 阅读 · 0 评论 -
智能计算笔记(一)
1.智能的能力。智能具有感知能力。智能具有记忆与思维能力。智能具有学习和自适应能力。智能具有行为能力。对外界信息做出动作反应的能力。何为智能计算智能计算是依靠生产者提供的数字、数据材料进行加工处理,而不是依赖于知识。生物智能。人工智能。非生物的,人造的,常用符号表示。AI的来源是人类知识的精华。计算智能。是由数学方法和计算机实现的。计算智能主要包括三个领域:神经计算模...原创 2020-02-18 18:49:15 · 417 阅读 · 0 评论 -
AI公益学习-机器翻译及其相关技术
机器翻译机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。import syssys.path.append('/home/kesci/input/d2l9528/')import collectionsimport d2limport zi...原创 2020-02-18 09:51:08 · 129 阅读 · 0 评论 -
AI公益学习循环神经网络进阶
GRURNN存在的问题:梯度较容易出现衰减或爆炸(BPTT)⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系重置⻔有助于捕捉时间序列⾥短期的依赖关系;更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。载入数据集import osos.listdir('/home/kesci/input')import numpy as npimport torchfrom torch ...原创 2020-02-17 17:50:29 · 165 阅读 · 0 评论 -
AI公益学习-循环神经网络基础
循环神经网络的构造从零开始实现循环神经网络我们先尝试从零开始实现一个基于字符级循环神经网络的语言模型,这里我们使用周杰伦的歌词作为语料,首先我们读入数据:import torchimport torch.nn as nnimport timeimport mathimport syssys.path.append("/home/kesci/input")import d2l_...原创 2020-02-16 17:33:15 · 197 阅读 · 0 评论 -
AI公益学习-循环神经网络采样方法
随机采样在随机采样照片那个,每个样本是原始序列上任意截取的一段序列。相邻的两个随机小批量在原始序列上的位置不一定相毗邻。因此,无法用一个小批量的最终时间步的隐藏状态来初始化下一个小批量的隐藏状态。在训练模型时,每次随机采样前都需要重新初始化隐藏状态相邻采样相邻的两个随机小批量在原始序列上的位置相毗邻。这时候,可以用一个小批量最终时间步的隐藏状态来初始化下一个小批量的隐藏状态从而使下一个小批...原创 2020-02-16 17:32:50 · 374 阅读 · 0 评论