数学物理方程<1>方程的导出和定解条件

三类方程的导出

1. 弦振动方程和定解条件

物理模型

长为 l 的柔软的、均匀细弦,拉紧后 在垂直于弦线的外力作用下做微小横振动(弦的运动发生在同一平面内,且弦上各点的位移与平衡位置垂直),求在不同时刻弦线的形状。
X轴为弦线的平衡位置,u轴为垂直于平衡位置的位移

弦振动方程

通过建立如上坐标系,我们得到在任意时刻 t t t ,弦线上各点的位移为 u = u ( x , t ) u=u(x,t) u=u(x,t)任取一段弦 [ a , b ] [a,b] [a,b] ,通过动量守恒定律,进行一系列的变换,得到弦振动方程(刻画均匀弦的微小横振动)
∂ 2 u ∂ t 2 − a 2 ∂ 2 u ∂ x 2 = f ( x , t ) ( 0 < x < l , t > 0 ) \frac{\partial^2 u}{\partial t^2}-a^2\frac{\partial^2 u}{\partial x^2}=f(x,t) \qquad (0<x<l,t>0) t22ua2x22u=f(x,t)(0<x<l,t>0)

定解条件(初始条件和边界条件)

一根弦线特定的振动状况还依赖于初始时刻弦线的状态和通过弦线的两端受到的外界的影响
初始条件
给出弦上各点在初始时刻 t = 0 t=0 t=0 的位移和速度。 u ( x , 0 ) = ψ ( x ) ( 0 < x < l ) u(x,0)=\psi(x)\qquad(0<x<l) u(x,0)=ψ(x)(0<x<l) u t ( x , 0 ) = ϕ ( x ) ( 0 < x < l ) u_t(x,0)=\phi(x)\qquad(0<x<l) ut(x,0)=ϕ(x)(0<x<l)边界条件
(1)已知端点的位移变化,即 u ( 0 , t ) = g

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值