第六章 参数估计

本文详细介绍了参数估计的两种主要方法——点估计和区间估计。点估计包括矩估计、最大似然估计和贝叶斯估计,其中最大似然估计基于使样本观测值出现概率最大的参数值。点估计的评价标准包括相合性、无偏性、有效性及均方误差。此外,文章还阐述了贝叶斯估计的统计推断基础和计算方法。区间估计部分涵盖了单个正态总体和两个正态总体参数的置信区间的计算,以及大样本情况下概率p的置信区间构建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实际工作中,对许多随机现象往往是知道其分布类型,但未知其中某些参数.如某全国统一考试的分数近似服从正态分布 N (µ , σ2 ),但参数µ , σ2 未知;又如一场足球比赛进球数近似服从泊松分布 P (λ ),但λ 未知.因此需根据样本对参数作出估计,分为点估计(point estimation)和区间估计(interval estimation)两类

点估计的几种方法:矩估计、最大似然估计、贝叶斯估计

在这里插入图片描述

矩估计-替换原理

在这里插入图片描述

最大似然估计

  • 基本原理:样本观测值可能在某参数取各种不同值下发生,使该样本观测值出现的概率最大的参数值作为该参数的估计值.
    在这里插入图片描述
  • 定义
    在这里插入图片描述
  • 估计步骤
    在这里插入图片描述
  • 例子
    在这里插入图片描述

点估计的评价标准

相合性

在这里插入图片描述
判断方法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

无偏性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值