第六章 参数估计
实际工作中,对许多随机现象往往是知道其分布类型,但未知其中某些参数.如某全国统一考试的分数近似服从正态分布 N (µ , σ2 ),但参数µ , σ2 未知;又如一场足球比赛进球数近似服从泊松分布 P (λ ),但λ 未知.因此需根据样本对参数作出估计,分为点估计(point estimation)和区间估计(interval estimation)两类
点估计的几种方法:矩估计、最大似然估计、贝叶斯估计
矩估计-替换原理
最大似然估计
- 基本原理:样本观测值可能在某参数取各种不同值下发生,使该样本观测值出现的概率最大的参数值作为该参数的估计值.
- 定义
- 估计步骤
- 例子
点估计的评价标准
相合性
判断方法