算法6:克鲁斯卡尔算法

1. 应用场景-公交站问题

  • 看一个应用场景和问题:

在这里插入图片描述

  1. 某城市新增7个站点(A, B, C, D, E, F, G) ,现在需要修路把7个站点连通
  2. 各个站点的距离用边线表示(权) ,比如 A – B 距离 12公里
  3. 问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?

2. 克鲁斯卡尔算法介绍

  1. 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法
  2. 基本思想:按照权值从小到大的顺序从中选择n-1条边,并保证这n-1条边不构成回路
  3. 具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止

3. 克鲁斯卡尔算法图解说明

  • 以城市公交站问题来图解说明 克鲁斯卡尔算法的原理和步骤:

  • 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。
    在这里插入图片描述

  • 例如,对于如上图所示的连通网可以有多棵权值总和不相同的生成树。

在这里插入图片描述

3.1 克鲁斯卡尔算法图解

  • 以上图为例,来对克鲁斯卡尔进行演示,用数组R保存最小生成树结果

在这里插入图片描述

  • 第1步:将边<E,F>加入R中。
    边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
  • 第2步:将边<C,D>加入R中。
    上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
  • 第3步:将边<D,E>加入R中。
    上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
  • 第4步:将边<B,F>加入R中。
    上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
  • 第5步:将边<E,G>加入R中。
    上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
  • 第6步:将边<A,B>加入R中。
    上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。
  • 此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。

3.2 克鲁斯卡尔算法分析

  • 根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
  1. 问题一 对图的所有边按照权值大小进行排序。
  2. 问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。
  • 问题一很好解决,采用排序算法进行排序即可。
  • 问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。

3.3 如何判断是否构成回路

在这里插入图片描述

  • 举例说明,如图在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:
    (01) C的终点是F。
    (02) D的终点是F。
    (03) E的终点是F。
    (04) F的终点是F。

  • 关于终点的说明:
    1)就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
    2)因此,接下来,虽然<C,E>是权值最小的边。但是C和E的终点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,我们新加入的边的两个顶点不能都指向同一个终点,否则将构成回路

4. 代码实现

import java.util.Arrays;

public class KruskalAlgorithm {

    // 边的个数
    private int edgeNum;
    // 顶点的个数
    private char[] vertexs;
    // 邻接矩阵
    private int[][] matrix;
    // 使用INF表示两个顶点不能连通
    public static final int INF = Integer.MAX_VALUE;

    public static void main(String[] args) {
        char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        // 克鲁斯卡尔算法的邻接矩阵
        int matrix[][] = {
                        /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
                /*A*/ {   0,  12, INF, INF, INF,  16,  14},
                /*B*/ {  12,   0,  10, INF, INF,   7, INF},
                /*C*/ { INF,  10,   0,   3,   5,   6, INF},
                /*D*/ { INF, INF,   3,   0,   4, INF, INF},
                /*E*/ { INF, INF,   5,   4,   0,   2,   8},
                /*F*/ {  16,   7,   6, INF,   2,   0,   9},
                /*G*/ {  14, INF, INF, INF,   8,   9,   0}};

        KruskalAlgorithm kruskalAlgorithm = new KruskalAlgorithm(vertexs, matrix);
        // 输出矩阵
        kruskalAlgorithm.print();
        kruskalAlgorithm.kruskal();
    }

    // 构造器
    public KruskalAlgorithm(char[] vertexs, int[][] matrix) {
        // 初始化顶点的个数
        int vlen = vertexs.length;
        // 初始化顶点
        this.vertexs = vertexs;
        // 初始化边
        this.matrix = matrix;
        // 统计边的条数,只需要统计矩阵右上三角形的值
        for (int i = 0; i < vlen; i++) {
            for (int j = i + 1; j < vlen; j++) {
                if (this.matrix[i][j] != INF) {
                    edgeNum++;
                }
            }
        }
    }

    // 打印邻接矩阵
    public void print() {
        System.out.println("邻接矩阵为:");
        for (int i = 0; i < vertexs.length; i++) {
            for (int j = 0; j < vertexs.length; j++) {
                System.out.printf("%12d", matrix[i][j]);
            }
            System.out.println();
        }
    }

    /**
     * 对边进行排序处理
     *
     * @param edges 边的集合
     */
    public void sortEdges(EData[] edges) {
        for (int i = 0; i < edges.length - 1; i++) {
            for (int j = 0; j < edges.length - 1 - i; j++) {
                if (edges[j].weight > edges[j + 1].weight) {//交换
                    EData tmp = edges[j];
                    edges[j] = edges[j + 1];
                    edges[j + 1] = tmp;
                }
            }
        }
    }

    /**
     * 查询ch顶点对应的下标,如果找不到返回-1
     *
     * @param ch 顶点的值,比如'A','B'
     * @return
     */
    private int getPosition(char ch) {
        for (int i = 0; i < vertexs.length; i++) {
            if (vertexs[i] == ch) {
                return i;
            }
        }
        return -1;
    }

    /**
     * 获取图中的边,放到EData[]数组中,后面需要遍历数组
     * 通过matrix邻接矩阵获取
     * EData[]形式 [['A','B', 12], ['B','F',7], .....]
     *
     * @return
     */
    private EData[] getEdges() {
        int index = 0;
        EData[] edges = new EData[edgeNum];
        for (int i = 0; i < vertexs.length; i++) {
            for (int j = i + 1; j < vertexs.length; j++) {
                if (matrix[i][j] != INF) {
                    edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
                }
            }
        }
        return edges;
    }

    /**
     * 获取下标为i的顶点的终点,用于后面判断两个顶点的终点是否相同
     *
     * @param ends 记录各个顶点对应的终点是哪个,ends需要在遍历过程中逐步形成;如果ends[i]为0,则返回i本身
     * @param i    传入顶点对应的下标
     * @return 下标为i的顶点对应的终点的下标
     */
    private int getEnd(int[] ends, int i) {
        // 这个循环可以找到以i为下标的顶点的最终的终点
        // 比如在准备添加边CE时,通过循环会发现c的终点是d(ends[2]=3,i被赋值为3),d的终点是f(ends[3]=5,i被赋值为5)
        // 但是ends[5]=0,则return 5,得到结果5,即c的终点是f;
        // 而e的终点ends[4]=5,即e的终点也是f
        // 而在遍历过程中形成ends[]时,只需要对当前边的头结点赋值终点,而不能对尾结点赋值终点
        // 因为ends[]中最终的终点是终点本身i,因为ends[i] != 0则会return i
        while (ends[i] != 0) {
            i = ends[i];
        }
        return i;
    }

    public void kruskal() {
        // 表示最后结果数组的索引
        int index = 0;
        // 用于保存已有最小生成树中每个顶点在最小生成树中的终点
        int[] ends = new int[vertexs.length];
        // 创建结果数组,保存最后的最小生成树
        EData[] rets = new EData[vertexs.length];
        // 获取图中所有边的集合
        EData[] edges = getEdges();
        System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共" + edges.length);
        // 按照边的权值大小进行排序(从小到大)
        sortEdges(edges);
        System.out.println("ends[]数组:");
        System.out.println(Arrays.toString(vertexs));
        // 遍历edges数组,将边添加到最小生成树中时,判断准备加入的边是否形成了回路
        // 如果没有,就加入rets,否则不能加入
        for (int i = 0; i < edgeNum; i++) {
            // 获取到第i条边的第一个顶点(头结点)
            int p1 = getPosition(edges[i].start);
            // 获取到第i条边的第二个顶点(尾结点)
            int p2 = getPosition(edges[i].end);
            // 获取p1这个顶点在已有最小生成树中的终点(如果不存在,则这个结点的终点就是它自己)
            int m = getEnd(ends, p1);
            // 获取p2这个顶点在已有最小生成树中的终点(如果不存在,则这个结点的终点就是它自己)
            int n = getEnd(ends, p2);
            // 如果没有形成回路,
            if (m != n) {
                // 将这条边加入到最小生成树的数组中
                rets[index++] = edges[i];
                // 然后把尾结点的终点赋值给头结点的终点,让头结点的终点指向尾结点的终点(即头、尾节点最终需要指向同一个结点)
                ends[m] = n;
                System.out.println(Arrays.toString(ends));
            }
        }
        //<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>
        // 统计并打印 最小生成树
        System.out.println("最小生成树为");
        for (int i = 0; i < index; i++) {
            System.out.println(rets[i]);
        }
    }

}

// 创建一个类用来表示一条边
class EData {
    // 边的头结点
    char start;
    // 边的尾结点
    char end;
    // 边的权值
    int weight;

    public EData(char start, char end, int weight) {
        this.start = start;
        this.end = end;
        this.weight = weight;
    }

    @Override
    public String toString() {
        return "EData{<" + start + ", " + end + "> =" + weight + "}";
    }
}

  • 结果打印
邻接矩阵为:
           0          12  2147483647  2147483647  2147483647          16          14
          12           0          10  2147483647  2147483647           7  2147483647
  2147483647          10           0           3           5           6  2147483647
  2147483647  2147483647           3           0           4  2147483647  2147483647
  2147483647  2147483647           5           4           0           2           8
          16           7           6  2147483647           2           0           9
          14  2147483647  2147483647  2147483647           8           9           0
图的边的集合=[EData{<A, B> =12}, EData{<A, F> =16}, EData{<A, G> =14}, EData{<B, C> =10}, EData{<B, F> =7}, EData{<C, D> =3}, EData{<C, E> =5}, EData{<C, F> =6}, EData{<D, E> =4}, EData{<E, F> =2}, EData{<E, G> =8}, EData{<F, G> =9}] 共12
[A, B, C, D, E, F, G]
[0, 0, 0, 0, 5, 0, 0]
[0, 0, 3, 0, 5, 0, 0]
[0, 0, 3, 5, 5, 0, 0]
[0, 5, 3, 5, 5, 0, 0]
[0, 5, 3, 5, 5, 6, 0]
[6, 5, 3, 5, 5, 6, 0]
最小生成树为
EData{<E, F> =2}
EData{<C, D> =3}
EData{<D, E> =4}
EData{<B, F> =7}
EData{<E, G> =8}
EData{<A, B> =12}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值