矩阵乘法的几何意义

原创 2018年04月15日 20:30:41

最近开始复习线代

线代真的该画画图

不要只是背公式算

可能太高维的不容易想象 但是低维画画图能加深理解

对了 要将矩阵看作变换


2*3矩阵a  

1   -1     2

0    2    -1

三个基向量即图中蓝线


俯视


(1,0)(-1,2)(2,-1)

分别是矩阵a的基向量在标准直角坐标系中坐标

即这个变换表示:原x轴单位向量1,0,0,对应到一个二维向量1,0

原y轴单位向量0,1,0,对应二维向量-1,2,这个“对应”的意思是,如果把这个变换附加到某个向量上,则将该向量所在标准直角坐标系的基向量0,1,0对应到-1,2,可以看为将基向量终点变形拉伸到-1,2,例如某向量在标准直角坐标系中表示为0,2,0,施加该变换后在标准直角坐标系中为-2,4

原z轴单位向量0,0,1,对应二维向量2,-1,关键地方在于要将一个不属于该维度的方向变换到该空间,而且这个变换不是投影,理解为函数式的对应关系。例如某向量0,0,2,施加该变换后为4,-2

 

然后就是变换的叠加

矩阵b  

1    2

0    1

-1    1

即基向量在标准直角坐标系中表示为 A  1,0,-1  ;  B  2,1,1

分别对矩阵b的基向量施加矩阵a变换

如果显得麻烦就对原基向量再次拆分  1,0,-1 → 1,0,0  + 0,0,-1 依次变换叠加

A 1,0,-1 →  -1,1  ; B  2,1,1 →   3,1  

倒回去看看向量D和向量C

D(-1,1) C(3,1)

 

这就是矩阵乘法ab的几何意义

 

另外,举2x3矩阵和3x2矩阵的乘法例子是为了说明以下几个问题

1,  为什么只有第一个矩阵列数等于第二个矩阵行数,ab才有意义

因为ab运算含义是将b做出a的变换,即将矩阵b空间里的向量,全部做a变换,最终全部容纳到矩阵a的向量空间内,可以重叠,重叠即降维(针对线性空间讲,非线性变换能扭曲重叠)其中矩阵的列数代表基向量个数,行数代表的意义是原向量空间的维度数,例如b有两列三行,表明基向量有两个,向量维度为3,需要将这三个维度全部做变换,至于做变换后对应空间有几个维度无所谓,因为能重叠,这对应的就是a的行数。A的列数表明a有三个基向量,基向量个数对应的就是指需要从b空间接受几个维度的信息,矩阵乘法为什么要求第一个矩阵列数和第二个矩阵行数相同才有意义?因为二者一致就意味着这个变换过程中信息无遗漏,和投影最大的区别就是投影会丢失信息。

2,  对比3x2矩阵和2x3矩阵的乘法

如图,蓝色向量分别为1,0  -1,2  2,-1

为矩阵a  

1    -1    2

0    2    -1

的三个基向量,注意到一点,他有三个基向量,但是只有两个维度,也就是说一个平面就能放下他的向量空间,如图很明显

问题在于将两个维度的矩阵a做矩阵b变换,b有三个维度

这就是之前所说和投影的区别,投影会丢失信息,往往要用投影还原图像时还需要加入其它信息,比如另一个方向的投影

但是这个不需要,因为他的信息是完整的,即矩阵a虽然只有两个维度,但是包含了三个基向量,这三个基向量可以在三维中展开(这种展开升维只是用更高维的视角去看的时候,他的坐标需要多加一个维度表示,但是实际上并没有添加信息,如上图,原本可以用二维平面表示矩阵a空间,用xy坐标对就能全部表示,经过矩阵b变换,b的基向量用红色表示,原a基向量变成黑色向量,它虽然在标准直角坐标系中每个点需要xyz三个坐标表示,但实际上其向量空间仍然是一个二维平面,只是在三维空间中被倾斜放置了)

附黑色向量坐标 (有一个和红色的重叠了)

即ba乘法运算后结果:

1    3    0

0    2    1

-1    3    -3


矩阵乘法几何意义

矩阵的几何意义,它可以总结为3个容易理解的特性。 变换(Transformations) 你应该已经知道变换(transformation),它将任意3D点的坐标变换到另一个3D点的坐标。下图你...
  • weiwei_baby
  • weiwei_baby
  • 2016-11-25 09:50:47
  • 1186

矩阵乘法的意义

矩阵乘法规则看起来比较复杂,不容易理解其乘法规则背后隐含的意义。现举一个例子说明矩阵乘法的意义。如下图所示,一个商店出售Beef pie,chicken pie,vegetable pie,其单价分别...
  • vernice
  • vernice
  • 2015-09-17 01:48:58
  • 4138

向量、矩阵乘法的几何意义(二) 矩阵乘法(Matrix Multiplication)

一、             旋转(rotation)1、   矩阵与向量相乘由向量内积(两个向量相乘)出发,考虑矩阵与向量相乘的情况。以二维平面空间为例,设X=(x1, x2, …, xn), xi...
  • tina_lulu_21
  • tina_lulu_21
  • 2008-05-29 20:54:00
  • 21780

向量、矩阵乘法的几何意义(一) scalar multiplication VS scalar product

1、scalar multiplication   纯量乘法(1)定义:纯量乘法是指一个标量r与一个向量V(或矩阵M)相乘,其结果为一个向量(矩阵),该向量(矩阵)的每一个元素为标量r与V(M)中对应...
  • tina_lulu_21
  • tina_lulu_21
  • 2008-05-20 08:14:00
  • 25082

向量与矩阵的相乘

在学习计算机图形学的时候,最常遇到的就是矩阵的乘法了,下面我们就简单的介绍下,使用程序如何编写两个矩阵的相乘呢?其实这个问题,大一的孩子都会写的,不是很难的,但是呢,为了构建一个完整的学习过程,还是记...
  • wodownload2
  • wodownload2
  • 2016-07-31 10:00:55
  • 906

理解矩阵乘法

转自:http://www.ruanyifeng.com/blog/2015/09/matrix-multiplication.html 大多数人在高中,或者大学低年级,都上过一门课《线性代数》...
  • sno_guo
  • sno_guo
  • 2016-04-10 08:25:48
  • 346

向量叉积的几何意义

其实这篇文章主要讨论为何向量叉积这样定义,标题是为了吸引人,让更多有同样疑惑的人搜到。 记得上大学时的第一节课是《空间解析几何》,和大多数的教材一样,开篇就是向量点积和叉积的定义。点积的定义很好理解...
  • hc14519
  • hc14519
  • 2016-02-22 13:38:59
  • 26048

矩阵的几何意义

转载自:http://blog.sina.com.cn/main_v5/ria/private.html?uid=1837328284 实数组的几何意义:(a,b)和(a,b,c)分...
  • sinat_26368235
  • sinat_26368235
  • 2015-09-08 15:19:56
  • 666

如何理解矩阵相乘的几何意义或现实意义?

作者:deng will链接:https://www.zhihu.com/question/28623194/answer/135658852来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非...
  • yangpan011
  • yangpan011
  • 2018-02-24 10:14:15
  • 160

矩阵几何意义

实数组的几何意义:(a,b)和(a,b,c)分别代表平面和三维空间上的一个点 矩阵的几何意义:在线性空间中,如果确定了一个基,线性映射就可以用确定的矩阵表示。               ...
  • u014204323
  • u014204323
  • 2017-05-21 16:26:35
  • 674
收藏助手
不良信息举报
您举报文章:矩阵乘法的几何意义
举报原因:
原因补充:

(最多只允许输入30个字)