矩阵相乘的理解(矩阵相乘的几何意义)及证明过程

1.基底的理解

  说到理解矩阵相乘的几何意义,第一个概念就是基底。何为基底哪?
  首先,我们有一个二维平面,比如有一张纸,此时纸上有一个点A,我们要描述这个点的位置,于是我们以这张纸的中心为原点,平行于底边过原点建立X轴,垂直与 X轴过原点建立Y轴,此时我们就可以使用点A到X轴的距离和点A到Y轴的距离来描述它的位置。同理我们就可以描述任何一个任何一个在二维平面上的点。
 此时我们用来描述位置的参考的X轴,Y轴就是一组基底。那我们可以用两个向量表示这一组基底(之所以是两个向量是应为此时要表示的二位平面),则此时基底表示为(我们选取单位向量表示):
i = [ 1 0 ] , j = [ 0 1 ] , i j = [ 1 0 0 1 ] (基底矩阵) \tag{基底矩阵} i = \begin{bmatrix} 1 \\ 0 \end{bmatrix} ,j = \begin{bmatrix} 0 \\ 1 \end{bmatrix} ,ij= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} i=[10],j=[01],ij=[1001]()
 基底本质是描述位置的参考,于是我们定义二位基底是不共线的两个向量。
基底的定义中并不要求是单位向量,也并不规定这两个向量必须正交。

2.证明过程

图1 换基
emmm本来想写换基来的emmmm还是算了吧。
如上图,点A在原来的X-Y基底中表示为:
A = ( 1 , 2 ) A=(1, 2) A=(1,2)
在新的坐标系X-new Y-new中表示为:
A n e w = ( 3 2 2 , 2 2 ) A_{new}=(\frac {3\sqrt{\smash[b]{2}}} 2, \frac {\sqrt{2}} 2) Anew=(232 ,22 )

上面的 A n e w A_{new} Anew是直接数出来的,那怎么计算得到它.

A n e w = ( X n , Y n ) A_{new}=(X_n,Y_n) Anew=(Xn,Yn)
设新的基底表示为
i n = [ 1 2 1 2 ] , j n = [ − 1 2 1 2 ] , i j n = [ 1 2 − 1 2 1 2 1 2 ] i_n= \begin{bmatrix} \frac 1 {\sqrt{2}} \\ \frac 1 {\sqrt{2}} \end{bmatrix} , j_n= \begin{bmatrix} -\frac 1 {\sqrt{2}} \\ \frac 1 {\sqrt{2}} \end{bmatrix} ,ij_n = \begin{bmatrix} \frac 1 {\sqrt{2}} & -\frac 1 {\sqrt{2}} \\ \frac 1 {\sqrt{2}} & \frac 1 {\sqrt{2}} \end{bmatrix} in=[2 12 1],jn=[2 12

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值