程序媛一枚~
热爱是最好的学习动力。
Either outstanding or out. (要么出众,要么出局)
展开
-
Python dlib(HOG+SVM)人脸识别总结
面部标志检测dlib 68点(HOG+SVM),194点人脸识别模型,包括口(外嘴唇,内嘴唇),鼻,眉毛(左右眉),眼睛(左右眼),下鄂5点面部标志检测器(左眼2点,右眼2点,鼻子1点)面部对齐更高效眨眼检测 ear 眨眼瞬间达到0疲劳驾驶检测—连续帧ear面部对齐 眼睛 连线反正切获取旋转角度,期望图像眼睛横长度计算比率 左眼计算右眼相对坐标 眼睛横中心点作为旋转点,获取旋转矩阵 应用仿射变换5点更适用于面部对齐,68点适用于眨眼检测及疲劳驾驶。Haar级联:快速,但准确性较低。原创 2024-04-23 22:49:59 · 348 阅读 · 0 评论 -
使用OpenCV、Keras和TensorFlow进行微笑检测
这篇博客将介绍如何构建端到端的计算机视觉和深度学习应用程序来执行微笑检测。1. 首先在SMILES数据集上训练了LeNet架构。由于SMILES数据集中的类不平衡,训练时设置了用于帮助缓解不平衡的类权重。2. 训练完成后,在测试集上评估了LeNet,发现该网络获得了相当高的91%分类准确率。3. 从网络摄像机/视频文件中读取帧,然后使用OpenCV的Haar级联检测人脸,提取人脸,然后应用预先训练好的网络判断是否在微笑。微笑检测系统可以轻松地在CPU上实时运行。...原创 2022-07-02 20:30:00 · 449 阅读 · 0 评论 -
使用Python,OpenCV,本地二进制模式(LBP)进行人脸识别
在深度学习和暹罗网络之前,面部识别算法依赖于特征提取和机器学习。今天,我们将涵盖最受欢迎的预学习人脸识别算法之一,用局部二进制模式(LBPS)面对脸部检测。原创 2021-08-21 12:17:58 · 1766 阅读 · 2 评论 -
Pyhton,OpenCV对象检测之——Haar级联人脸及眼睛检测
这篇博客将介绍如何使用预训练的模型——基于Haar特征的级联检测器进行人脸及眼睛检测。原创 2021-08-09 22:12:31 · 1546 阅读 · 2 评论 -
使用dlib应用(HOG和CNN)进行人脸检测
这篇博客将介绍如何使用dlib库应用HOG+线性SVM和CNNs执行人脸检测。dlib库是人脸识别最常用的软件包之一,其中内置了两种人脸检测方法:- HOG+线性SVM人脸检测器:精确高效的人脸检测算法,精确度比MMOD—CNN稍低一些(不能容忍视角旋转的变化),但要高于OpenCV的Haar级联。- MMOD-CNN人脸检测器:既高度准确又非常健壮,能够从不同的视角、光照条件和遮挡条件下检测人脸。可以在NVIDIA GPU上运行,使其速度超快!该模型需要更多的计算(速度较慢)。原创 2021-07-01 22:25:32 · 4387 阅读 · 6 评论 -
使用OpenCV,Haar级联检测器进行面部、眼睛、嘴部检测
这篇博客将介绍如何使用预训练好的OpenCV Haar级联人脸、眼睛、嘴部检测器,并将它们应用于实时视频流。人脸检测结果是最稳定和准确的。不幸的是,在许多情况下,眼睛检测和嘴巴检测结果是不可用的——对于面部特征/部分提取,强烈建议[使用python,dlib,OpenCV提取眼睛,鼻子,嘴唇及下颌](https://blog.csdn.net/qq_40985985/article/details/106136330),dlib的检测要比眼睛Haar级联,嘴巴Haar级联本身更稳定,甚至更快。原创 2021-06-27 11:27:45 · 24359 阅读 · 16 评论 -
使用Python,OpenCV和Haar级联进行人脸检测——轻量级的人脸检测器
这篇博客将介绍一个**轻量级的人脸检测器——Haar级联人脸检测器**,并实现对图像进行检测和实时视频中进行人脸检测。原创 2021-05-25 21:42:01 · 1245 阅读 · 3 评论 -
使用Python,OpenCV实现图像和实时视频流中的人脸模糊和马赛克
这篇博客将介绍检测人脸,然后使用Python,OpenCV模糊来“匿名化”每张图像,以确保隐私得到保护,保证没有人脸可以被识别如何使用。并介绍俩种模糊的方法:简单高斯模糊、像素化模糊。原创 2021-06-07 22:56:20 · 5482 阅读 · 25 评论 -
什么是人脸识别
这篇博客介绍了面部识别是一个两阶段的过程,包括:1. 面部检测和面部ROI的提取(兴趣区)2. 识别脸部所属的人简要回顾了面部识别算法的历史,包括:由研究人员手动标记的粗鲁的(通常是主观的)面部标志基于线性的代数基技术,如特征缺陷和FishFacesLbps面部识别基于深度学习的模型,包括Faceget和OpenFace本系列的下一个教程将介绍如何使用OpenCV实现特征文件(Eigenfaces )。原创 2021-05-08 18:02:50 · 749 阅读 · 0 评论 -
站在巨人的肩膀上,Adrian与dlib中face_recongnition模块的贡献者Adam的采访部分翻译
这篇博客是Adrain对Adam Geitgey的采访部分翻译Adrian:pyimagesearch博客作者,博士,写了很多关于OpenCV,人脸识别,机器学习,深度学习,计算机视觉等的高质量博客,今年发现的一个宝藏作者,在这里可以学到一些很有实际意义的课程。(人脸检测、制作GIF、图片去重、图片模糊度检查等)Adam:dlib中face_recognition模块贡献者,https://www.machinelearningisfun.com/的作者。Adam采访概述:1. 自述2. 他原创 2020-10-31 08:57:02 · 437 阅读 · 0 评论 -
使用Python,dlib中新型、更快、更小的5点面部标志检测器检测人脸、眼睛、鼻子
这篇博客将应用dlib新型,更快,更紧凑的5点面部标志检测器进行面部标志检测;该5点面部标志检测器可以被认为是最初随dlib库一起分发的68点标志检测器的直接替代品。在讨论了两个面部标志检测器之间的区别之后,提供了应用5点形式来检测人脸的眼睛和鼻子区域的示例脚本;测试发现,5点面部标志检测器比68点版本快8-10%,而模型小10倍。原创 2020-10-31 08:30:29 · 2590 阅读 · 0 评论 -
使用Python,OpenCV,面部标志进行面部对齐
这篇博文将演示如何使用OpenCV,Python和面部标记对齐面部。核心是:使用仿射变换(affine transformation)对齐面部;面部对齐方法确实可以 (1)使面部居中, (2)旋转面部以使眼睛沿水平线; (3)缩放面部以使它们的大小大致相同原创 2020-10-25 20:54:38 · 1364 阅读 · 0 评论 -
使用Python,OpenCV创建动画GIF图和模因生成器
在这篇博客中,我们将学习如何使用Python,OpenCV,dlib和ImageMagick工具箱创建动画GIF。 使用OpenCV构建一个模因生成器!我们以多种实用方式利用了计算机视觉和深度学习,包括:人脸检测、面部标志预测、提取脸部区域(在这种情况下为眼睛)、计算眼睛之间的角度(面部对齐的要求)、通过Al 通过Alpha混合生成透明叠加层 。 最后,我们获取了一组生成的图像,然后使用OpenCV和ImageMagick创建了动画GIF。原创 2020-10-25 20:18:04 · 2778 阅读 · 2 评论 -
使用Python,dlib,OpenCV在实时的视频流中进行面部标志检测
上一个博客里写了面部标志是什么及如何利用dlib进行图片中的面部标志检测;这篇博客扩展了之前的面部标志检测,并将其应用于实时检测任务,在实时的视频流中进行人脸标志检测。在图像中检测面部标志与在视频流中检测面部标志之间几乎没有区别,主要区别是是设置视频流指针,然后在流中轮询帧的部分。检测面部标志的实际过程是相同的,只是我们现在不是在单个图像中检测面部标志,而是在一系列帧中检测面部标志。原创 2020-11-14 23:32:46 · 690 阅读 · 0 评论 -
使用Python,OpenCV,dlib进行睡意检测(疲劳驾驶检测)
在这篇博客中,学习了如何使用OpenCV,dlib和Python构建睡意检测器。睡意疲劳依赖于面部检测,面部标志检测,眼睛纵横比的计算;根据面部检测,面部标志检测可以定位到眼睛的具体位置,及具体坐标。一旦有了眼睛区域,就可以应用眼睛纵横比来确定眼睛是否闭合。如果眼睛闭合了足够长的时间,我们可以假设用户有入睡的风险,并发出警报提醒。原创 2020-09-06 21:46:41 · 4196 阅读 · 7 评论 -
使用OpenCV,Python和dlib进行眨眼检测及计数
在此博客文章中,将演示如何使用OpenCV,Python和dlib构建眨眼检测器。建立眨眼检测器的第一步是执行面部标志检测,以将眼睛定位在视频流中的给定帧中。第二步:根据两只眼睛的面部界标,计算每只眼睛的眼睛纵横比;第三步:根据纵横比阈值确定一个人是否在眨眼-睁开眼睛时,眼睛的长宽比将保持大致恒定,然后在眨眼期间迅速接近零,然后在睁开眼睛时再次增加。第四步:改进眨眼检测,减少错误的计算,可以采用计算第N维,第N-6,第N+6构建13维向量进行判断;原创 2020-08-29 21:18:21 · 1554 阅读 · 0 评论 -
windows10+Python3.7安装dlib库进行面部标志识别
dlib 是一个C++库,由戴维斯·金(Davis King) 开发,是用于线程,网络,数值运算,机器学习,计算机视觉和压缩的跨平台软件包,特别强调了极高质量和可移植的代码。dlib的文档也非常出色。从计算机视觉的角度来看,dlib具有许多最新的实现,包括:面部标志检测、相关跟踪、深度度量学习 。安装dlib库有4个前置条件:Boost:Boost是经过同行评审(即非常高质量)的C ++...原创 2020-05-02 22:14:34 · 753 阅读 · 0 评论 -
使用python,dlib,OpenCV提取眼睛,鼻子,嘴唇及下颌
在这篇博客中,将演示如何使用面部标志检测来检测图像中的各种面部结构。 具体来说包括,如何检测和提取:口 右眉 左眉 右眼 左眼 鼻子 下颚线 这是通过dlib的预先训练好的面部标志检测器以及一些OpenCV和Python魔术切片实现的。...原创 2020-06-24 15:44:03 · 6103 阅读 · 3 评论 -
python dlib实现面部标志识别
要使用Python、OpenCV、dlib实现面部标志的识别需要俩步:究竟什么是面部标志以及它们是如何工作的。如何使用dlib,OpenCV, Python从图像中检测和提取面部标志(1)从图像中定位面部ROI(2)检测面部ROI上的关键面部结构(即面部标志)windows10+python3.7安装dlib参考:https://editor.csdn.net/md?articl...原创 2020-05-02 22:15:53 · 840 阅读 · 0 评论