
机器学习
文章平均质量分 92
程序媛一枚~
热爱是最好的学习动力。
Either outstanding or out. (要么出众,要么出局)
展开
-
ImageProcessing,ComputerVision,DeepLearning中的名词
深度学习,机器学习里有很多名词,它们分别代表什么呢?原创 2023-12-21 22:59:52 · 1472 阅读 · 0 评论 -
深入流行推荐引擎3:Spotify音乐推荐系统
深入流行推荐引擎3:Spotify音乐推荐系统原创 2023-11-19 20:45:00 · 888 阅读 · 0 评论 -
面向物流的计算机视觉和深度学习3
公司正在寻找优化供应链的方法,以帮助做出决策,以提高运营效率和客户满意度,并减少对环境的影响。预测和规划: 在需求预测的帮助下,公司可以确保手头有适量的材料并计划生产活动。结果可以与有关成本、产能等的其他相关数据相结合。优化: 人工智能可以分析历史行程、现有路线以及地理、环境和交通数据,以使用最短路径图算法,并为物流卡车确定最有效的方式。此外基于过去有关销售、数量、市场状况、货币汇率和通货膨胀的历史数据,预测分析可以帮助公司最大限度地降低商品错误定价的风险。自动化仓库。原创 2023-11-12 22:15:00 · 348 阅读 · 0 评论 -
面向教育的计算机视觉和深度学习5
这篇博客将介绍在教育领域使用深度学习的好处、应用、挑战和权衡(tradeoffs)。原创 2023-11-04 18:45:00 · 450 阅读 · 0 评论 -
面向石油和天然气的计算机视觉和深度学习1
这篇博客将介绍在石油和天然气领域使用深度学习的好处、应用、挑战和权衡。原创 2023-10-21 19:45:00 · 611 阅读 · 0 评论 -
深入流行推荐引擎0:推荐系统基础
这篇博客介绍了推荐系统的基本原理。推荐系统通过基于用户的兴趣和偏好对用户的项目(例如电影)进行排名来提供个性化。给定一个项目,推荐引擎衡量该项目对用户的有用性或效用。推荐系统的核心挑战是开发效用函数,因为它并不是为用户和项目的所有组合定义的。**根据效用函数的性质,推荐系统可以分为三种类型:- 基于内容的- 协作的- 混合的 基于内容的推荐系统试图推荐与用户已经喜欢或评价的项目相似的项目。另一方面,协作系统建议与给定用户具有相似兴趣的其他用户评价或喜欢的项目。原创 2023-07-08 20:45:00 · 581 阅读 · 0 评论 -
机器学习对商业的影响
机器学习是一种强大的工具,可以帮助企业在当今数据驱动的经济中获得竞争优势。原创 2023-06-28 23:00:00 · 604 阅读 · 0 评论 -
使用PyTorch执行特征提取和微调的迁移学习来进行图像分类
这篇博客将介绍如何使用PyTorch深度学习库执行图像分类的转移学习。① 通过特征提取执行迁移学习② 通过微调执行迁移学习第①种方法通常更容易实现,在某些情况下效果很好。然而,它往往不如第二种方法准确。即模型的准确性和泛化能力都会受到影响。大多数形式的迁移学习都采用②微调。通常建议使用特征提取方法来获得基线精度。如果准确度足以满足那就太棒了!然而,如果精度不够,那么应该进行微调,看看是否可以提高精度。无论式通过特征提取还是微调的迁移学习,都会为你节省大量的时间和精力,而不是从头开始训练模型。原创 2023-06-17 20:15:00 · 1980 阅读 · 0 评论 -
机器学习、计算机视觉和深度学习
机器学习(ML)是一个致力于理解和构建“学习”方法的研究领域,即利用数据来提高某些任务性能的方法。它被视为人工智能的一部分。学习骑自行车是大多数人都经历过的过程。起初依靠父母或朋友的支持,当我们试图踩踏板并保持平衡时,他们会稳住自行车。渐渐地,通过练习,我们变得更擅长骑行,直到我们能够自信地独自骑行。我们成功地学会了一项新技能!机器学习就像教电脑“骑自行车”。研究人员和开发人员的目标是让计算机像我们一样从经验中学习。他们为计算机提供了许多例子和数据,类似于观察许多自行车骑行。原创 2023-06-17 20:00:00 · 1829 阅读 · 0 评论