
Open3D
文章平均质量分 74
程序媛一枚~
热爱是最好的学习动力。
Either outstanding or out. (要么出众,要么出局)
展开
-
Python随机生成2堆三维点云点,有固定的重复率并可视化
这篇博客源于博友的提问,本来不打算周末整的,刚好电脑在旁边没啥事,那就开整吧。np.random 生成随机点(提供了俩种方法,1. xyz限制都是0~MAX值,2. xyz分别限制最大值为0~MAXxyz)第一堆生成完成后,第2堆确定的是重复的点,然后生成剩余的点,生成过程要注意判断不能生成已经有了的点open3d可视化及计算验证重复率。原创 2023-07-08 22:32:00 · 748 阅读 · 0 评论 -
使用Python 构建球体/正方体/多面体/兔子/八面体等点云,Open3D可视化及重建
点云生成8面体点并拟合绘制表面重建结果。(官方示例兔子,8面体,多面体,球体)原创 2023-05-20 22:15:00 · 1199 阅读 · 0 评论 -
Python Open3D点云配准点对点,点对面ICP(Iterative Closest Point)
这篇博客将介绍 **迭代最近点配准算法(Iterative Closest Point, ICP)** 。多年来,它一直是研究和工业中几何注册的支柱。**输入是两个点云和一个初始变换,该变换大致将源点云与目标点云对齐。输出是一个精确的变换,它将两个点云紧密对齐。**- 将展示俩种ICP变体,点对点ICP(PointToPoint)和点对面ICP(PointToPlane)。原创 2022-12-10 20:54:40 · 4336 阅读 · 3 评论 -
使用Python,Open3D对点云散点投影到面上并可视化,使用3种方法计算面的法向量及与平均法向量的夹角
这篇博客将介绍以下5部分:1. 随机生成点云点2. 投影点到面(给出了6个面的中心点,离哪个中心点距离近就投影到哪个面)3. 对投影到每个面的点云计算法向量点(3种方法 KNN 半径近邻 混合近邻)4. 对每个面上的法向量及与平均法向量的夹角5. 可视化原始点及法向量点原创 2022-11-17 22:45:00 · 3039 阅读 · 4 评论 -
Open3D o3dtut怎么导入才不报错
Open3D o3dtut 怎么导入才不报错问题:解决1. 导入o3dtut2. 添加open3d_tutorial.py类3. 构建目录结构,运行成功写这篇博客源于博友的提问,最初我以为是环境配置或者软件版本的问题。真正去解决的时候发现不是。问题:在使用Open3D网格化的时候需要用到o3dtut,报错如下:mesh = o3dtut.get_knot_mesh()NameError: name ‘o3dtut’ is not defined解决1. 导入o3dtutimport open原创 2020-12-09 11:26:08 · 4100 阅读 · 12 评论 -
Open3D点云处理算法最全合集
Open3D算法最全合集,致力于搜集可运行,可视化较好的Open3D算法,持续更新中…1. Open3D 点云读取及可视化、离群点去除2. Open3D 点云体素格下采样3. Open3D 点云KdTree建立、3种近邻搜索及结果可视化Open3D 点云法向量3种计算方法及可视化5. Open3D 点云下采样、离群点去除、地面提取、法向量计算及可视化6. Open3D 点云 DbScanClustering聚类算法7. Open3D 计算点云凸包8. Open3D 计算点云包围盒9.原创 2020-09-24 18:30:10 · 8120 阅读 · 2 评论 -
Open3D 点云法向量3种估计方法及法向量可视化
该博客主要进行:(1)点云读取可视化(2)下采样可视化(3)法向量三种估计方式(K近邻估计,半径近邻估计,混合搜索估计)(4)点云法向量可视化(5)点云每个点对应的法向量点存储(6)点云法向量点可视化原创 2020-09-24 18:23:54 · 9098 阅读 · 17 评论 -
Open3D KdTree建立、3种近邻搜索及结果可视化
1. 点云索引Open3D KdTree,可以快速的在无序的点云中建立空间拓扑结构,使得能迅速的进行近邻搜索;2. 近邻方法分类:Open3D这边支持的近邻搜索方法由VTK实现;K近邻搜索(K Nearest Neighbors Search)半径近邻搜索(Radius Nearest Neighbors Search)混合近邻搜索( RKNN Radius K Nearest Neighbors Search)3. 索引应用点云下采样点云的高效无损压缩 15%基于邻域关原创 2020-09-23 16:26:54 · 5493 阅读 · 2 评论 -
Open3D 三维点云读取可视化、下采样、去除离群点、地面提取
Open3D:3D数据处理的现代库,是一个开放源代码库,支持快速开发处理3D数据的软件。Open3D在C ++和Python中公开了一组精心选择的数据结构和算法。后端经过高度优化,并支持并行化。 推荐Python,支持Python(3.5、3.6、3.7、3.8),支持系统(Ubuntu 18.04+、macOS 10.14+、Windows 10 (64-bit))。Open3D的核心功能包括:3D数据结构3D数据处理算法场景重建表面对齐3D可视化基于物理的渲染【 Physically原创 2020-06-01 10:05:06 · 13110 阅读 · 16 评论 -
Open3D DbScanClustering聚类算法及聚类分簇可视化及存储
DBSCAN聚类算法,是基于密度的聚类算法。该算法需要两个参数。labels = np.array(pcd.cluster_dbscan(eps=0.02, min_points=10, print_progress=True))入参:eps: 定义到聚类邻居的距离min_points: 定义形成聚类所需的最小点数。出参:该函数返回一个标签,其中标签-1表示噪音。该算法定义以选中的点开始蔓延,邻居点距离<=0.02米,最小有10个点就可以构成一个簇;适用于原始点云分隔的比较原创 2020-09-13 20:01:03 · 6944 阅读 · 19 评论