图像识别
文章平均质量分 91
程序媛一枚~
热爱是最好的学习动力。
Either outstanding or out. (要么出众,要么出局)
展开
-
语义 VS 实例 VS 全景分割(Semantic vs. Instance vs. Panoptic Segmentation)
这篇博客将讨论语义、实例和全景图像分割技术(语义 VS 实例 VS 全景分割(Semantic vs. Instance vs. Panoptic Segmentation)。所有这三种技术在学术界和现实世界中都提供了有效的应用。在过去几年中,全景分割在研究人员中看到了更多的增长,以推进计算机视觉领域。相比之下,语义分割和实例分割有许多现实世界的应用,因为它们的算法更加成熟。无论以何种形式,图像分割对于跨行业的超自动化都是必不可少的。原创 2023-01-07 23:30:00 · 960 阅读 · 0 评论 -
使用拼写检查提高Tesseract OCR准确性
上一篇博客介绍了如何使用textblob库和Tesseract自动进行OCR文本,然后将其翻译为其他语言。这篇博客还将通过textblob应用自动拼写检查OCR文本来提高OCR准确性 **(能够使用textblob纠正拼写错误,纠正单词等)**。......原创 2022-07-14 23:33:11 · 1200 阅读 · 0 评论 -
使用TensorFlow、Keras和深度学习实现像素无序超分辨率
这篇博客将介绍一种使用带有RDB的高效亚像素CNN实现超分辨率的方法。使用RDB对PSNR统计数据没有任何显著影响。然而可视化后,亚像素CNN产生的图像质量比原始图像要清晰一些。原创 2022-06-06 17:18:19 · 757 阅读 · 0 评论 -
OpenCV的图像分类基础知识
这篇博客将提供一个高级概述的图像分类,以及许多挑战的图像分类算法,还将审查与图像分类和机器学习相关的三种不同类型的学习。最后,将通过讨论培训深度学习网络的四个步骤来讨论图像分类的四个步骤以及该四步管道如何与传统的手工特征提取管道进行比较。原创 2021-08-26 23:24:29 · 5780 阅读 · 4 评论 -
Windows安装用于OCR的Tesseract及使用命令行参数进行OCR
这篇博客将介绍如何安装和使用光学字符识别(OCR Optical Character Recognition)的Tesseract库,并使用命令行对图像中的字符进行识别;**除非图像被清晰地分割,否则 Tesseract 会产生很差的结果。**在“嘈杂”输入图像的情况下,需要通过训练自定义机器学习模型来识别特定用例中的字符来获得更高的准确性。原创 2021-08-17 21:58:40 · 1209 阅读 · 0 评论 -
Windows下命令行及Java+Tesseract-OCR对图像进行(字母+数字+中文)识别,亲测可行
Windows下Java+Tesseract-OCR对图像进行字符识别,亲测可行原创 2021-07-11 14:12:31 · 4797 阅读 · 14 评论