
计算机视觉
文章平均质量分 90
程序媛一枚~
热爱是最好的学习动力。
Either outstanding or out. (要么出众,要么出局)
展开
-
ImageProcessing,ComputerVision,DeepLearning中的名词
深度学习,机器学习里有很多名词,它们分别代表什么呢?原创 2023-12-21 22:59:52 · 1471 阅读 · 0 评论 -
深入流行推荐引擎3:Spotify音乐推荐系统
深入流行推荐引擎3:Spotify音乐推荐系统原创 2023-11-19 20:45:00 · 884 阅读 · 0 评论 -
面向物流的计算机视觉和深度学习3
公司正在寻找优化供应链的方法,以帮助做出决策,以提高运营效率和客户满意度,并减少对环境的影响。预测和规划: 在需求预测的帮助下,公司可以确保手头有适量的材料并计划生产活动。结果可以与有关成本、产能等的其他相关数据相结合。优化: 人工智能可以分析历史行程、现有路线以及地理、环境和交通数据,以使用最短路径图算法,并为物流卡车确定最有效的方式。此外基于过去有关销售、数量、市场状况、货币汇率和通货膨胀的历史数据,预测分析可以帮助公司最大限度地降低商品错误定价的风险。自动化仓库。原创 2023-11-12 22:15:00 · 347 阅读 · 0 评论 -
面向教育的计算机视觉和深度学习5
这篇博客将介绍在教育领域使用深度学习的好处、应用、挑战和权衡(tradeoffs)。原创 2023-11-04 18:45:00 · 448 阅读 · 0 评论 -
自然语言处理 (NLP) 简介
这篇博客将简要介绍自然语言处理的历史。对NLP历史的简要介绍表明研究很久以前就开始了。研究人员利用了在语言学中对人类语言的理解所奠定的基础,并对如何推动NLP向前发展有了正确的想法。然而技术的局限性成为最大的障碍,并且一度该领域的研究几乎停滞不前。但技术只有一条路,那就是前进。技术的发展为NLP研究人员提供了足够的计算能力,并拓宽了许多视野。现在正处于语言模型帮助创建虚拟助手的阶段,这些助手可以交谈,帮助完成任务等。原创 2023-10-28 22:45:00 · 301 阅读 · 0 评论 -
使用Python,mediapipe构建手部姿势探测器
这篇博客将介绍手部标志是什么,以及如何使用Python,mediapipe构建手部姿势探测器,Mediapipe是一个跨平台的库,由谷歌开发,为计算机视觉任务提供惊人的现成的ML解决方案。原创 2023-10-29 19:15:00 · 300 阅读 · 0 评论 -
面向交通运输的计算机视觉和深度学习2
人工智能可以通过以下方式为每个人提供更安全、更清洁、更智能、更高效的交通方式。道路运输:道路车辆可以使用各种传感器,如GPS、摄像头和雷达,以及执行器(actuators)(将输入信号转换为行动的设备)、控制单元和软件,以执行自动驾驶等智能动作。航空:将对客户行为的历史和实时见解转化为实时策略(例如,调整向客户展示的网站内容)。铁路:人工智能可以帮助改善铁路运营商和基础设施管理者的制造、运营和维护。它将改善管理,降低成本,并增强与直接竞争对手或其他运输方式的竞争力。原创 2023-10-28 22:45:00 · 468 阅读 · 0 评论 -
面向石油和天然气的计算机视觉和深度学习1
这篇博客将介绍在石油和天然气领域使用深度学习的好处、应用、挑战和权衡。原创 2023-10-21 19:45:00 · 610 阅读 · 0 评论 -
深入推荐引擎2:YouTube 视频推荐系统
这篇博客将介绍 YouTube 视频推荐系统,YouTube 是世界上最大的创建、消费和分享视频内容的平台。他们的推荐帮助数十亿用户从不断增长的视频语料库中发现个性化内容。根据 Cristos Goodrow(YouTube 工程副总裁)的说法,推荐在 YouTube 上推动了大量整体收视率,甚至超过了频道订阅或搜索。 其幕后的工作原理是什么呢?原创 2023-10-14 23:30:00 · 401 阅读 · 0 评论 -
机器学习对商业的影响
机器学习是一种强大的工具,可以帮助企业在当今数据驱动的经济中获得竞争优势。原创 2023-06-28 23:00:00 · 604 阅读 · 0 评论 -
机器学习、计算机视觉和深度学习
机器学习(ML)是一个致力于理解和构建“学习”方法的研究领域,即利用数据来提高某些任务性能的方法。它被视为人工智能的一部分。学习骑自行车是大多数人都经历过的过程。起初依靠父母或朋友的支持,当我们试图踩踏板并保持平衡时,他们会稳住自行车。渐渐地,通过练习,我们变得更擅长骑行,直到我们能够自信地独自骑行。我们成功地学会了一项新技能!机器学习就像教电脑“骑自行车”。研究人员和开发人员的目标是让计算机像我们一样从经验中学习。他们为计算机提供了许多例子和数据,类似于观察许多自行车骑行。原创 2023-06-17 20:00:00 · 1827 阅读 · 0 评论 -
Part1:使用 TensorFlow 和 Keras 的 NeRF计算机图形学和深度学习——计算机图形学世界中相机的工作原理
这篇博客将介绍计算机图像学的基础主题,包括:1. 前向成像模型(拍照)2. 世界到相机(3D到3D)转换3. 相机到图像(3D到2D)转换4. 所需的数据集,涵盖了所有先决条件。原创 2023-05-30 23:30:00 · 1349 阅读 · 0 评论