YOLOv5源码解读1.6-网络架构yolo.py

 往期回顾:YOLOv5源码解读1.0-目录_汉卿HanQ的博客-CSDN博客


        学习完yolov*.yaml,就可以看具体网络架构了。本篇先介绍yolo.py,这是yolo的特定模块,yolov5的模型建立是依靠yolo.py中的函数和对象完成的。


目录

1.导入python包

2.获取文件路径

3.加载自定义模块

4.Detect类

4.1参数初始化__init

4.2前向传播forward

4.3转换坐标_make_grid

5. Model类

5.1前向传播forward

5.2推理的前向传播_forward_augment

5.3训练的前向传播_forward_once

5.4恢复图片_descale_pred

5.5图片切割_clip_augmented

5.6打印日志操作_profile_one_layer

5.7初始化偏置biases信息_initialize_biases

5.8打印偏置信息_print_biases

5.9将Conv2d+BN进行融合fuse

5.10扩展模型功能autoshape

5.11打印模型结构信息info

5.12模块转移到CPU/GPU_apply

6.解析yaml模块parse_model

6.1参数初始化

6.2搭建网络前准备

6.3打印保存layers信息

7.main函数

8.整体代码


1.导入python包

# ----------------------------------1.导入python包----------------------------------
import argparse  # 解析命令行参数模块
import sys  # sys系统模块 包含了与Python解释器和它的环境有关的函数
from copy import deepcopy  # 数据拷贝模块 深拷贝
from pathlib import Path  # Path将str转换为Path对象 使字符串路径易于操作的模块

2.获取文件路径

# ----------------------------------2.获取文件路径----------------------------------
FILE = Path(__file__).resolve() # __file__指的是当前文件(即val.py),FILE最终保存着当前文件的绝对路径,比如D://yolov5/modles/yolo.py
ROOT = FILE.parents[1]  # YOLOv5 root directory 保存着当前项目的父目录,比如 D://yolov5
if str(ROOT) not in sys.path:  # sys.path即当前python环境可以运行的路径,假如当前项目不在该路径中,就无法运行其中的模块,所以就需要加载路径
    sys.path.append(str(ROOT))  # add ROOT to PATH  把ROOT添加到运行路径上
# ROOT = ROOT.relative_to(Path.cwd())  # relative  ROOT设置为相对路径

3.加载自定义模块

# ----------------------------------3.加载自定义模块----------------------------------
from models.common import *  # yolov5的网络结构(yolov5)
from models.experimental import *  # 导入在线下载模块
from utils.autoanchor import check_anchor_order  # 导入检查anchors合法性的函数
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args  # 定义了一些常用的工具函数
from utils.plots import feature_visualization  # 定义了Annotator类,可以在图像上绘制矩形框和标注信息
from utils.torch_utils import (copy_attr, fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device,
                               time_sync)  # 定义了一些与PyTorch有关的工具函数

# 导入thop包 用于计算FLOPs
try:
    import thop  # for FLOPs computation
except ImportError:
    thop = None

4.Detect类

4.1参数初始化__init
class Detect(nn.Module):
    stride = None  # 特征图缩放步长
    onnx_dynamic = False  # ONMX动态量化

    # ----------------------------------4.1 参数初始化__init__----------------------------------
    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc # nc: 数据集类别数量
        self.no = nc + 5  # nc+5=nc+(x,y,w,h,conf) # no: 表示每个anchor的输出数,前nc个01字符对应类别,后5个对应:是否有目标,目标框的中心,目标框的宽高
        self.nl = len(anchors) # nl: 表示预测层数,yolov5是3层预测
        self.na = len(anchors[0]) // 2 # na: 表示anchors的数量,除以2是因为[10,13, 16,30, 33,23]这个长度是6,对应3个anchor
        self.grid = [torch.zeros(1)] * self.nl # grid: 表示初始化grid列表大小,下面会计算grid,grid就是每个格子的x,y坐标(整数,比如0-19),左上角为(1,1),右下角为(input.w/stride,input.h/stride)
        self.anchor_grid = [torch.zeros(1)] * self.nl  # anchor_grid: 表示初始化anchor_grid列表大小,空列表
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, # 注册常量anchor,并将预选框(尺寸)以数对形式存入,并命名为anchors
                                                                               2))  # shape(nl,na,2) 注意后面就可以通过self.anchors来访问它了
        # 每一张进行三次预测,每一个预测结果包含nc+5个值
        # (n, 255, 80, 80),(n, 255, 40, 40),(n, 255, 20, 20) --> ch=(255, 255, 255)
        # 255 -> (nc+5)*3 ===> 为了提取出预测框的位置信息以及预测框尺寸信息
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv 3个输出层最后的1乘1卷积
        self.inplace = inplace  # inplace: 一般都是True,默认不使用AWS,Inferentia加速
        # 如果模型不训练那么将会对这些预测得到的参数进一步处理,然后输出,可以方便后期的直接调用
        # 包含了三个信息pred_box [x,y,w,h] pred_conf[confidence] pre_cls[cls0,cls1,cls2,...clsn]
4.2前向传播forward
 # ----------------------------------4.2 前向传播forward----------------------------------
    """
        这段代码主要是对三个feature map分别进行处理:(n,255,80,80),(n,255,40,40),(n,255,20,20)
        首先进行for循环,每次的循环,产生一个z。维度重排列:(n,255,_,_)->(n,3,nc+5,ny,nx)->(n,3,ny,nx,nc+5)
        三层分别预测了80*80、40*40、20*20次。接着构造网格,因为推理返回的不是归一化后的网格偏移量,需要再加上网格的位置,得到最终的推理坐标,再送入nms。
        所以这里构建网格就是为了纪律每个grid的网格坐标方面后面使用最后按损失函数的回归方式来转换坐标,利用sigmoid激活函数计算定位参数,cat(dim=-1)为直接拼接。
        注意:训练阶段直接返回x,而预测阶段返回3个特征图拼接的结果
    """
    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() # 维度重排列:bs 先验框数组 检测框行数 属性数 分类数
            # 前向传播将相对坐标转移到grid绝对坐标中
            if not self.training:  # inference 生成坐标系
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: #输入后重新设定锚框
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) # 加载网格坐标 先验框尺寸
                # 按损失函数回归方式转换坐标
                y = x[i].sigmoid()
                if self.inplace: # 改变原数据 计算定位参数
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy gird位置基准 cell的预测初始位置 y[...,0:2]是grid坐标基础上的位置偏移
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh anchor_grid 预测框基准 预测框初始位置 y[..., 2:4]作为预测框位置的调整
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy stride是一个grid cell的实际尺寸 sigmoid为0-1 这里变化到-0.5 1.5
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh 范围扩大0-4倍(4倍是下层感受野是上层2倍) 下层注重大目标 计算量小
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no)) # 存储每个特征图检测框的信息

        return x if self.training else (torch.cat(z, 1), x) # 返回x(三个特征图拼接结果)
4.3转换坐标_make_grid
# ----------------------------------4.3 转换坐标_make_grid----------------------------------
    """
        将相对坐标系转换到grid绝对坐标系
        grid*3是因为每个scale生成3个预测框
        anchor_grid是anchor宽高
    """
    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij') # indexing='ij' i是同一行 j是同一列
        else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float() # 复制三倍
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float() # stride是下采样率 三层分别是8 16 36
        return grid, anchor_grid

5. Model类

# ----------------------------------5. Model类----------------------------------
class Model(nn.Module):
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        super().__init__()# 父类的构造方法
        # 检查传入的参数格式,如果cfg是加载好的字典结果
        if isinstance(cfg, dict):

            self.yaml = cfg  # 直接保存到模型中
        # 若不是字典 则为yaml文件路径
        else:  # is *.yaml 一般执行这里

            import yaml  # 导入yaml文件

            self.yaml_file = Path(cfg).name # 保存文件名:cfg file name = yolov5s.yaml

            with open(cfg, encoding='ascii', errors='ignore') as f: # 如果配置文件中有中文,打开时要加encoding参数

                self.yaml = yaml.safe_load(f)  # 将yaml文件加载为字典 model dict 取到配置文件中每条的信息(没有注释内容)
        # Define model 搭建模型
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels 判断yaml的ch是否存在
        if nc and nc != self.yaml['nc']: # 判断类的ch与yaml是否一致
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") # 终端提示
            self.yaml['nc'] = nc  # 将yaml改为model的nc
        if anchors: # 重写anchor 一般不用 因为默认None
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') # 终端提示
            self.yaml['anchors'] = round(anchors)  # yaml值改为model的
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # 解析模型
        self.names = [str(i) for i in range(self.yaml['nc'])]  # 加载每一类的类别名
        self.inplace = self.yaml.get('inplace', True) # inplace类似x+=1 True不使用加速推理

        # Build strides, anchors 构造步长和anchor
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect): # 判断最后一层是否是detect层
            s = 256  # 定义一个256*256输入
            m.inplace = self.inplace
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # 保存特征层的stride 并将anchor处理成对应特征层的格式
            m.anchors /= m.stride.view(-1, 1, 1) # 原始定义的anchor是原始图片像素值 将其缩放至特征图大小
            check_anchor_order(m) # 价差anchor顺序与stride是否一致
            self.stride = m.stride # 保存步长
            self._initialize_biases()  # 初始化bias

        # Init weights, biases
        initialize_weights(self) # 初始化权重
        self.info() # 打印模型信息
        LOGGER.info('')
5.1前向传播forward
# ----------------------------------5.1 前向传播forward----------------------------------
    """
        管理前向传播
        x 原图
        augment 是否使用增强式推到
        profile 是否测试每个网络层性能
        visualize 是否输出每个网络层的特征图
    """
    def forward(self, x, augment=False, profile=False, visualize=False):
        if augment:
            return self._forward_augment(x)  # 增强训练
        return self._forward_once(x, profile, visualize)  # 默认整除前向推理
5.2推理的前向传播_forward_augment
# ----------------------------------5.2 推理的前向传播_forward_augment----------------------------------
    """
        将图片进行裁剪 送入到模型中进行检擦
        做数据增强TTA x为图像tensor
        只在test detect中出现 用于提高推导精度
    """
    def _forward_augment(self, x):
        img_size = x.shape[-2:]  # height, width 获取图像宽和高
        s = [1, 0.83, 0.67]  # scales 对图像进行三次变化 原图 尺寸缩小0.83并水平翻转 尺寸缩小0.67
        f = [None, 3, None]  # flips (2-ud, 3-lr) 翻转
        y = []  # outputs
        for si, fi in zip(s, f):
            # scale_img将参数缩放和翻转
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]  # forward 前向传播_forward_once
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size) # 恢复数据到增强前
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, 1), None  # augmented inference, train
5.3训练的前向传播_forward_once
 # ----------------------------------5.3 训练的前向传播_forward_once----------------------------------
    """
        对模型每一层进行迭代 训练的前向全波
        x 输入图像
        profile 测试每个网络层性能
        visualize 是否输出每个网络层的特征图(获取batch第一张图象,然后把每个通道上的二维矩阵看出一张灰度图绘制)
    """
    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # 各网络层输出 y存放着self.save=True的每一层输出 后面concat要用到 dt在profile中性能评估使用
        for m in self.model: # 遍历model各个模块
            if m.f != -1:  # if not from previous layer m.f是该层的输入来源 不是-1就不是从上一层来的
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers from指向网络层输出的列表
            if profile: # 测试该网络层的性能
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run 使用该网络层进行推导 得到该网络层的输出
            y.append(x if m.i in self.save else None)  # save output 存放self.save的每一层输出 后面需要作concat操作,将每一层输出结果保存到y
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize) # 绘制该图片第一张图的特征图
        return x
5.4恢复图片_descale_pred
# ----------------------------------5.4 恢复图片_descale_pred----------------------------------
    """
        将推理结果恢复到原图尺寸(逆操作)
        p 推理结果
        flips 反转标记
        scale 图片缩放比例
        img_size 原图图片尺寸
    """
    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            # 把xywh恢复
            p[..., :4] /= scale  # de-scale
            if flips == 2: # 下翻转变化
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3: # 水平翻转
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p
5.5图片切割_clip_augmented
# ----------------------------------5.5 图片切割_clip_augmented----------------------------------
    """
        TTA时对图片进行裁剪切割 数据增强方式
    """
    def _clip_augmented(self, y):
        # Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][:, :-i]  # large
        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][:, i:]  # small
        return y
5.6打印日志操作_profile_one_layer
 # ----------------------------------5.6 打印日志操作_profile_one_layer----------------------------------
    """
        曾是每个网络层的性能
        m 网络层
        x 该网络层的from列表中的网络层输出
        dt 各网络层推导耗时(列表)
    """
    def _profile_one_layer(self, m, x, dt):
        """
            time 前向推导时间
            GFLOPs 浮点运算量
            params 网络层参数量
            module 网络层名称
        """
        c = isinstance(m, Detect)  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")
5.7初始化偏置biases信息_initialize_biases
 # ----------------------------------5.7 初始化偏置biases信息_initialize_biases----------------------------------
    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
5.8打印偏置信息_print_biases
# ----------------------------------5.8 打印偏置信息_print_biases----------------------------------
    def _print_biases(self):
        m = self.model[-1]  # Detect() module
        for mi in m.m:  # from
            b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
            LOGGER.info(
                ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
5.9将Conv2d+BN进行融合fuse
# ----------------------------------5.9 将Conv2d+BN进行融合fuse----------------------------------
    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            # 如果当前是卷积层Conv且有BN结构 就调用fuse_conv_and_bn进行融合加速推理
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv 更新卷积层
                delattr(m, 'bn')  # remove batchnorm 移除BN
                m.forward = m.forward_fuse  # update forward 更新前向传播
        self.info() # 打印融合信息
        return self
5.10扩展模型功能autoshape
# ----------------------------------5.10 扩展模型功能autoshape----------------------------------
    def autoshape(self):  # add AutoShape module
        LOGGER.info('Adding AutoShape... ')
        # 预处理+推理+NMS
        m = AutoShape(self)  # wrap model
        copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=())  # copy attributes
        return m
5.11打印模型结构信息info
# ----------------------------------5.11 打印模型结构信息info----------------------------------
    def info(self, verbose=False, img_size=640):  # print model information
        model_info(self, verbose, img_size)
5.12模块转移到CPU/GPU_apply
 # ----------------------------------5.12 模块转移到CPU/GPU_apply----------------------------------
    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

6.解析yaml模块parse_model

def parse_model(d, ch):  # model_dict, input_channels(3)
    """
        解析yaml模块 并且到common中找到相对于的模块,然后组成一个完整的模型解析文件,并搭建网络结构。如果后续对模型框架改动,需要对这个函数做改动
        d yaml配置文件
        ch 记录每一层 channel
    """
6.1参数初始化
# ----------------------------------6.1 参数初始化----------------------------------
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}") # 输出
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] # 获取 anchors nc depth_multiple width_multiple
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors 判断anchor数量
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5) 根据anchor数量输出维度
6.2搭建网络前准备
# ----------------------------------6.2 搭建网络前准备----------------------------------
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out 网络单元列表(保存每一层的层结构) 网络输出引用列表(记录from不是-1)当前的输出通道数(保存当前channel)
    # 读取backbone head中的网络单元
    """
        f from 当前输入来自哪里
        n number 当前层次数
        m module 当前层类别
        args 当前层参数
        eval 将字符串当成有效的表达式来求值 实现list dict tuple str转换
    """
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings 使用eval读取model参数对应的类名
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings 使用eval将字符串转换为变量
            except NameError:
                pass

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain 控制深度 n为当前模块的次数
        if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
            c1, c2 = ch[f], args[0] # c1当前层输入channel c2当前层输出channel ch记录所有层的输出channel
            if c2 != no:  # if not output no=17 只有最后一层c2=no 最后一层不用控制宽度 输出channel必须是no
                c2 = make_divisible(c2 * gw, 8) # width gain 控制宽度

            args = [c1, c2, *args[1:]] # 在初始args上更新 加入当前层输出channel并更新当前层
            # 如果当前层是BottleneckCPS/C3/C3Ghost/C3
            if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                args.insert(2, n)  # number of repeats 在args第二个位置插入Bottlenect个数n
                n = 1 # 恢复默认1
        elif m is nn.BatchNorm2d: # 是否进行归一化模块
            args = [ch[f]] # BN值需要返回上一层channel
        elif m is Concat: # 是否tensor连接模块
            c2 = sum(ch[x] for x in f) # concat层将f所有输出累加到这层的输出channel
        elif m is Detect: # 是否是detect模块
            args.append([ch[x] for x in f]) # args中加入三个detect层的输出channel
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]
6.3打印保存layers信息
 # ----------------------------------6.3 打印保存layers信息----------------------------------
        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module m_得到当前层module 将n个模块组合存放到m_中
        t = str(m)[8:-2].replace('__main__.', '')  # module type 打印当前层结构的一些基本信息
        np = sum(x.numel() for x in m_.parameters())  # number params 计算着一层的参数量
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # 所有层结构中from!=-1记录
        layers.append(m_) # 当前层结构module加入到layers中
        if i == 0:
            ch = [] # 取出输入channel[3]
        ch.append(c2) # 把当前层输出channel数加入ch
    return nn.Sequential(*layers), sorted(save)

7.main函数

# ----------------------------------7 main函数----------------------------------
if __name__ == '__main__':
    parser = argparse.ArgumentParser() # 创建解析器
    parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') # cfg配置文件
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # device 选择设备
    parser.add_argument('--profile', action='store_true', help='profile model speed') # profile 用户配置文件
    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml') # tsest 测试
    opt = parser.parse_args() # 增加后的属性给args
    opt.cfg = check_yaml(opt.cfg)  # check YAML 检查yaml
    print_args(FILE.stem, opt) # 检测yolov5的仓库是否给出更新
    device = select_device(opt.device) # 选择设备

    # Create model 构造模型
    model = Model(opt.cfg).to(device)
    model.train()

    # Profile 用户自定义配置
    if opt.profile:
        img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
        y = model(img, profile=True)

    # Test all models 测试所有模型
    if opt.test:
        for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
            try:
                _ = Model(cfg)
            except Exception as e:
                print(f'Error in {cfg}: {e}')

    # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
    # from torch.utils.tensorboard import SummaryWriter
    # tb_writer = SummaryWriter('.')
    # LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
    # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), [])  # add model graph

8.整体代码

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
YOLO-specific modules

Usage:
    $ python path/to/models/yolo.py --cfg yolov5s.yaml
"""
# ----------------------------------1.导入python包----------------------------------
import argparse  # 解析命令行参数模块
import sys  # sys系统模块 包含了与Python解释器和它的环境有关的函数
from copy import deepcopy  # 数据拷贝模块 深拷贝
from pathlib import Path  # Path将str转换为Path对象 使字符串路径易于操作的模块

# ----------------------------------2.获取文件路径----------------------------------
FILE = Path(__file__).resolve() # __file__指的是当前文件(即val.py),FILE最终保存着当前文件的绝对路径,比如D://yolov5/modles/yolo.py
ROOT = FILE.parents[1]  # YOLOv5 root directory 保存着当前项目的父目录,比如 D://yolov5
if str(ROOT) not in sys.path:  # sys.path即当前python环境可以运行的路径,假如当前项目不在该路径中,就无法运行其中的模块,所以就需要加载路径
    sys.path.append(str(ROOT))  # add ROOT to PATH  把ROOT添加到运行路径上
# ROOT = ROOT.relative_to(Path.cwd())  # relative  ROOT设置为相对路径


# ----------------------------------3.加载自定义模块----------------------------------
from models.common import *  # yolov5的网络结构(yolov5)
from models.experimental import *  # 导入在线下载模块
from utils.autoanchor import check_anchor_order  # 导入检查anchors合法性的函数
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args  # 定义了一些常用的工具函数
from utils.plots import feature_visualization  # 定义了Annotator类,可以在图像上绘制矩形框和标注信息
from utils.torch_utils import (copy_attr, fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device,
                               time_sync)  # 定义了一些与PyTorch有关的工具函数

# 导入thop包 用于计算FLOPs
try:
    import thop  # for FLOPs computation
except ImportError:
    thop = None

# ----------------------------------4.Detect类----------------------------------
class Detect(nn.Module):
    stride = None  # 特征图缩放步长
    onnx_dynamic = False  # ONMX动态量化

    # ----------------------------------4.1 参数初始化__init__----------------------------------
    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc # nc: 数据集类别数量
        self.no = nc + 5  # nc+5=nc+(x,y,w,h,conf) # no: 表示每个anchor的输出数,前nc个01字符对应类别,后5个对应:是否有目标,目标框的中心,目标框的宽高
        self.nl = len(anchors) # nl: 表示预测层数,yolov5是3层预测
        self.na = len(anchors[0]) // 2 # na: 表示anchors的数量,除以2是因为[10,13, 16,30, 33,23]这个长度是6,对应3个anchor
        self.grid = [torch.zeros(1)] * self.nl # grid: 表示初始化grid列表大小,下面会计算grid,grid就是每个格子的x,y坐标(整数,比如0-19),左上角为(1,1),右下角为(input.w/stride,input.h/stride)
        self.anchor_grid = [torch.zeros(1)] * self.nl  # anchor_grid: 表示初始化anchor_grid列表大小,空列表
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, # 注册常量anchor,并将预选框(尺寸)以数对形式存入,并命名为anchors
                                                                               2))  # shape(nl,na,2) 注意后面就可以通过self.anchors来访问它了
        # 每一张进行三次预测,每一个预测结果包含nc+5个值
        # (n, 255, 80, 80),(n, 255, 40, 40),(n, 255, 20, 20) --> ch=(255, 255, 255)
        # 255 -> (nc+5)*3 ===> 为了提取出预测框的位置信息以及预测框尺寸信息
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv 3个输出层最后的1乘1卷积
        self.inplace = inplace  # inplace: 一般都是True,默认不使用AWS,Inferentia加速
        # 如果模型不训练那么将会对这些预测得到的参数进一步处理,然后输出,可以方便后期的直接调用
        # 包含了三个信息pred_box [x,y,w,h] pred_conf[confidence] pre_cls[cls0,cls1,cls2,...clsn]

    # ----------------------------------4.2 前向传播forward----------------------------------
    """
        这段代码主要是对三个feature map分别进行处理:(n,255,80,80),(n,255,40,40),(n,255,20,20)
        首先进行for循环,每次的循环,产生一个z。维度重排列:(n,255,_,_)->(n,3,nc+5,ny,nx)->(n,3,ny,nx,nc+5)
        三层分别预测了80*80、40*40、20*20次。接着构造网格,因为推理返回的不是归一化后的网格偏移量,需要再加上网格的位置,得到最终的推理坐标,再送入nms。
        所以这里构建网格就是为了纪律每个grid的网格坐标方面后面使用最后按损失函数的回归方式来转换坐标,利用sigmoid激活函数计算定位参数,cat(dim=-1)为直接拼接。
        注意:训练阶段直接返回x,而预测阶段返回3个特征图拼接的结果
    """
    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() # 维度重排列:bs 先验框数组 检测框行数 属性数 分类数
            # 前向传播将相对坐标转移到grid绝对坐标中
            if not self.training:  # inference 生成坐标系
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: #输入后重新设定锚框
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) # 加载网格坐标 先验框尺寸
                # 按损失函数回归方式转换坐标
                y = x[i].sigmoid()
                if self.inplace: # 改变原数据 计算定位参数
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy gird位置基准 cell的预测初始位置 y[...,0:2]是grid坐标基础上的位置偏移
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh anchor_grid 预测框基准 预测框初始位置 y[..., 2:4]作为预测框位置的调整
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy stride是一个grid cell的实际尺寸 sigmoid为0-1 这里变化到-0.5 1.5
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh 范围扩大0-4倍(4倍是下层感受野是上层2倍) 下层注重大目标 计算量小
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no)) # 存储每个特征图检测框的信息

        return x if self.training else (torch.cat(z, 1), x) # 返回x(三个特征图拼接结果)

    # ----------------------------------4.3 转换坐标_make_grid----------------------------------
    """
        将相对坐标系转换到grid绝对坐标系
        grid*3是因为每个scale生成3个预测框
        anchor_grid是anchor宽高
    """
    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij') # indexing='ij' i是同一行 j是同一列
        else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float() # 复制三倍
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float() # stride是下采样率 三层分别是8 16 36
        return grid, anchor_grid

# ----------------------------------5. Model类----------------------------------
class Model(nn.Module):
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        super().__init__()# 父类的构造方法
        # 检查传入的参数格式,如果cfg是加载好的字典结果
        if isinstance(cfg, dict):

            self.yaml = cfg  # 直接保存到模型中
        # 若不是字典 则为yaml文件路径
        else:  # is *.yaml 一般执行这里

            import yaml  # 导入yaml文件

            self.yaml_file = Path(cfg).name # 保存文件名:cfg file name = yolov5s.yaml

            with open(cfg, encoding='ascii', errors='ignore') as f: # 如果配置文件中有中文,打开时要加encoding参数

                self.yaml = yaml.safe_load(f)  # 将yaml文件加载为字典 model dict 取到配置文件中每条的信息(没有注释内容)
        # Define model 搭建模型
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels 判断yaml的ch是否存在
        if nc and nc != self.yaml['nc']: # 判断类的ch与yaml是否一致
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") # 终端提示
            self.yaml['nc'] = nc  # 将yaml改为model的nc
        if anchors: # 重写anchor 一般不用 因为默认None
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') # 终端提示
            self.yaml['anchors'] = round(anchors)  # yaml值改为model的
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # 解析模型
        self.names = [str(i) for i in range(self.yaml['nc'])]  # 加载每一类的类别名
        self.inplace = self.yaml.get('inplace', True) # inplace类似x+=1 True不使用加速推理

        # Build strides, anchors 构造步长和anchor
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect): # 判断最后一层是否是detect层
            s = 256  # 定义一个256*256输入
            m.inplace = self.inplace
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # 保存特征层的stride 并将anchor处理成对应特征层的格式
            m.anchors /= m.stride.view(-1, 1, 1) # 原始定义的anchor是原始图片像素值 将其缩放至特征图大小
            check_anchor_order(m) # 价差anchor顺序与stride是否一致
            self.stride = m.stride # 保存步长
            self._initialize_biases()  # 初始化bias

        # Init weights, biases
        initialize_weights(self) # 初始化权重
        self.info() # 打印模型信息
        LOGGER.info('')

    # ----------------------------------5.1 前向传播forward----------------------------------
    """
        管理前向传播
        x 原图
        augment 是否使用增强式推到
        profile 是否测试每个网络层性能
        visualize 是否输出每个网络层的特征图
    """
    def forward(self, x, augment=False, profile=False, visualize=False):
        if augment:
            return self._forward_augment(x)  # 增强训练
        return self._forward_once(x, profile, visualize)  # 默认整除前向推理

    # ----------------------------------5.2 推理的前向传播_forward_augment----------------------------------
    """
        将图片进行裁剪 送入到模型中进行检擦
        做数据增强TTA x为图像tensor
        只在test detect中出现 用于提高推导精度
    """
    def _forward_augment(self, x):
        img_size = x.shape[-2:]  # height, width 获取图像宽和高
        s = [1, 0.83, 0.67]  # scales 对图像进行三次变化 原图 尺寸缩小0.83并水平翻转 尺寸缩小0.67
        f = [None, 3, None]  # flips (2-ud, 3-lr) 翻转
        y = []  # outputs
        for si, fi in zip(s, f):
            # scale_img将参数缩放和翻转
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]  # forward 前向传播_forward_once
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size) # 恢复数据到增强前
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, 1), None  # augmented inference, train

    # ----------------------------------5.3 训练的前向传播_forward_once----------------------------------
    """
        对模型每一层进行迭代 训练的前向全波
        x 输入图像
        profile 测试每个网络层性能
        visualize 是否输出每个网络层的特征图(获取batch第一张图象,然后把每个通道上的二维矩阵看出一张灰度图绘制)
    """
    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # 各网络层输出 y存放着self.save=True的每一层输出 后面concat要用到 dt在profile中性能评估使用
        for m in self.model: # 遍历model各个模块
            if m.f != -1:  # if not from previous layer m.f是该层的输入来源 不是-1就不是从上一层来的
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers from指向网络层输出的列表
            if profile: # 测试该网络层的性能
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run 使用该网络层进行推导 得到该网络层的输出
            y.append(x if m.i in self.save else None)  # save output 存放self.save的每一层输出 后面需要作concat操作,将每一层输出结果保存到y
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize) # 绘制该图片第一张图的特征图
        return x

    # ----------------------------------5.4 恢复图片_descale_pred----------------------------------
    """
        将推理结果恢复到原图尺寸(逆操作)
        p 推理结果
        flips 反转标记
        scale 图片缩放比例
        img_size 原图图片尺寸
    """
    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            # 把xywh恢复
            p[..., :4] /= scale  # de-scale
            if flips == 2: # 下翻转变化
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3: # 水平翻转
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p

    # ----------------------------------5.5 图片切割_clip_augmented----------------------------------
    """
        TTA时对图片进行裁剪切割 数据增强方式
    """
    def _clip_augmented(self, y):
        # Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][:, :-i]  # large
        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][:, i:]  # small
        return y

    # ----------------------------------5.6 打印日志操作_profile_one_layer----------------------------------
    """
        曾是每个网络层的性能
        m 网络层
        x 该网络层的from列表中的网络层输出
        dt 各网络层推导耗时(列表)
    """
    def _profile_one_layer(self, m, x, dt):
        """
            time 前向推导时间
            GFLOPs 浮点运算量
            params 网络层参数量
            module 网络层名称
        """
        c = isinstance(m, Detect)  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    # ----------------------------------5.7 初始化偏置biases信息_initialize_biases----------------------------------
    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

    # ----------------------------------5.8 打印偏置信息_print_biases----------------------------------
    def _print_biases(self):
        m = self.model[-1]  # Detect() module
        for mi in m.m:  # from
            b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
            LOGGER.info(
                ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))

    # def _print_weights(self):
    #     for m in self.model.modules():
    #         if type(m) is Bottleneck:
    #             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights

    # ----------------------------------5.9 将Conv2d+BN进行融合fuse----------------------------------
    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            # 如果当前是卷积层Conv且有BN结构 就调用fuse_conv_and_bn进行融合加速推理
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv 更新卷积层
                delattr(m, 'bn')  # remove batchnorm 移除BN
                m.forward = m.forward_fuse  # update forward 更新前向传播
        self.info() # 打印融合信息
        return self

    # ----------------------------------5.10 扩展模型功能autoshape----------------------------------
    def autoshape(self):  # add AutoShape module
        LOGGER.info('Adding AutoShape... ')
        # 预处理+推理+NMS
        m = AutoShape(self)  # wrap model
        copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=())  # copy attributes
        return m

    # ----------------------------------5.11 打印模型结构信息info----------------------------------
    def info(self, verbose=False, img_size=640):  # print model information
        model_info(self, verbose, img_size)

    # ----------------------------------5.12 模块转移到CPU/GPU_apply----------------------------------
    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

# ----------------------------------6 解析yaml模块parse_model----------------------------------
def parse_model(d, ch):  # model_dict, input_channels(3)
    """
        解析yaml模块 并且到common中找到相对于的模块,然后组成一个完整的模型解析文件,并搭建网络结构。如果后续对模型框架改动,需要对这个函数做改动
        d yaml配置文件
        ch 记录每一层 channel
    """
    # ----------------------------------6.1 参数初始化----------------------------------
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}") # 输出
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] # 获取 anchors nc depth_multiple width_multiple
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors 判断anchor数量
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5) 根据anchor数量输出维度

    # ----------------------------------6.2 搭建网络前准备----------------------------------
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out 网络单元列表(保存每一层的层结构) 网络输出引用列表(记录from不是-1)当前的输出通道数(保存当前channel)
    # 读取backbone head中的网络单元
    """
        f from 当前输入来自哪里
        n number 当前层次数
        m module 当前层类别
        args 当前层参数
        eval 将字符串当成有效的表达式来求值 实现list dict tuple str转换
    """
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings 使用eval读取model参数对应的类名
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings 使用eval将字符串转换为变量
            except NameError:
                pass

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain 控制深度 n为当前模块的次数
        if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
            c1, c2 = ch[f], args[0] # c1当前层输入channel c2当前层输出channel ch记录所有层的输出channel
            if c2 != no:  # if not output no=17 只有最后一层c2=no 最后一层不用控制宽度 输出channel必须是no
                c2 = make_divisible(c2 * gw, 8) # width gain 控制宽度

            args = [c1, c2, *args[1:]] # 在初始args上更新 加入当前层输出channel并更新当前层
            # 如果当前层是BottleneckCPS/C3/C3Ghost/C3
            if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                args.insert(2, n)  # number of repeats 在args第二个位置插入Bottlenect个数n
                n = 1 # 恢复默认1
        elif m is nn.BatchNorm2d: # 是否进行归一化模块
            args = [ch[f]] # BN值需要返回上一层channel
        elif m is Concat: # 是否tensor连接模块
            c2 = sum(ch[x] for x in f) # concat层将f所有输出累加到这层的输出channel
        elif m is Detect: # 是否是detect模块
            args.append([ch[x] for x in f]) # args中加入三个detect层的输出channel
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]
        # ----------------------------------6.3 打印保存layers信息----------------------------------
        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module m_得到当前层module 将n个模块组合存放到m_中
        t = str(m)[8:-2].replace('__main__.', '')  # module type 打印当前层结构的一些基本信息
        np = sum(x.numel() for x in m_.parameters())  # number params 计算着一层的参数量
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # 所有层结构中from!=-1记录
        layers.append(m_) # 当前层结构module加入到layers中
        if i == 0:
            ch = [] # 取出输入channel[3]
        ch.append(c2) # 把当前层输出channel数加入ch
    return nn.Sequential(*layers), sorted(save)

# ----------------------------------7 main函数----------------------------------
if __name__ == '__main__':
    parser = argparse.ArgumentParser() # 创建解析器
    parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') # cfg配置文件
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # device 选择设备
    parser.add_argument('--profile', action='store_true', help='profile model speed') # profile 用户配置文件
    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml') # tsest 测试
    opt = parser.parse_args() # 增加后的属性给args
    opt.cfg = check_yaml(opt.cfg)  # check YAML 检查yaml
    print_args(FILE.stem, opt) # 检测yolov5的仓库是否给出更新
    device = select_device(opt.device) # 选择设备

    # Create model 构造模型
    model = Model(opt.cfg).to(device)
    model.train()

    # Profile 用户自定义配置
    if opt.profile:
        img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
        y = model(img, profile=True)

    # Test all models 测试所有模型
    if opt.test:
        for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
            try:
                _ = Model(cfg)
            except Exception as e:
                print(f'Error in {cfg}: {e}')

    # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
    # from torch.utils.tensorboard import SummaryWriter
    # tb_writer = SummaryWriter('.')
    # LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
    # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), [])  # add model graph

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》,课程链接 https://edu.csdn.net/course/detail/29865【为什么要学习这门课】 Linux创始人Linus Torvalds有一句名言:Talk is cheap. Show me the code. 冗谈不够,放码过来!  代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。【课程内容与收获】 本课程将解析YOLOv4的实现原理和源码,具体内容包括:- YOLOv4目标检测原理- 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算- 代码阅读工具及方法- 深度学习计算的利器:BLAS和GEMM- GPU的CUDA编程方法及在darknet的应用- YOLOv4的程序流程- YOLOv4各层及关键技术的源码解析本课程将提供注释后的darknet的源码程序文件。【相关课程】 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括:《YOLOv4目标检测实战:训练自己的数据集》《YOLOv4-tiny目标检测实战:训练自己的数据集》《YOLOv4目标检测实战:人脸口罩佩戴检测》《YOLOv4目标检测实战:中国交通标志识别》建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。【YOLOv4网络模型架构图】 下图由白勇老师绘制  

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值