使用逻辑回归实现数字识别

手写数字的识别是机器学习的一个十分经典的问题,也是逻辑回归进行多类分类的一个典型案例。

开发环境

分别使用python和matlab编程实现,下面以python为例。

数据准备

数据来自吴恩达机器学习课程,共5000张图片,大小均为20*20,在此下载

数据导入

# 导入数据
print("loading data...")
data = scio.loadmat("ex3data1.mat")
x = data['X']
y = data['y']

数据展示

随机挑选100张图片进行展示:

# 训练样本数
m = x.shape[0]
# 选取100个样本进行数据展示,洗牌操作
arr = np.arange(m)
np.random.shuffle(arr)
disp = x[arr[0:100], :]
# 展示数据
display_data(disp)
def display_data(x):
    """
    :param x: 输入的照片
    :return: 
    """
    # 设置单个图片展示宽度及高度
    width = round(math.sqrt(x.shape[1]))
    m, n = x.shape
    height = round(n / width)
    # 设置横向、纵向展示个数
    raw_num = math.floor(math.sqrt(x.shape[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值