概述
Streamlit 是一个用于构建数据应用程序的强大工具,但它本身并不直接支持异步编程。然而,通过结合 Python 的 asyncio
模块,我们可以在 Streamlit 应用中实现异步处理,从而提高应用的响应性和效率。
为什么需要异步编程
在数据科学和机器学习领域,我们经常需要处理长时间运行的任务,例如文档嵌入、模型训练等。如果这些任务在主线程中运行,将会阻塞用户界面,导致用户体验不佳。通过使用 asyncio
,我们可以在不阻塞用户界面的情况下执行这些任务,并在任务完成后通知用户。
实现步骤
1. 安装必要的库
首先,确保你已经安装了 Streamlit 和 asyncio 库。通常情况下,Streamlit 会自动安装 asyncio,但为了确保,你可以运行以下命令:
pip install streamlit
2. 创建一个基本的 Streamlit 应用程序
创建一个新的 Python 文件(例如 app.py
),并编写一个基本的 Streamlit 应用程序:
import streamlit as st
def main():
st.title("Streamlit Asyncio Example")
st.write("Welcome to the Streamlit Asyncio example.")
if __name__ == "__main__":
main