面经|快手数据分析一面

本文是一篇关于快手数据分析面试的回顾,涵盖了从搭建指标体系、数据应用、业务沟通到个人能力评估等多个方面的问题及回答。面试中强调了数据在监控、问题发现、业务调整中的作用,以及与业务、产品等部门的协作。同时,讨论了个人的职业规划和对未来工作环境的期望。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.自我介绍
面试官提示主要谈下简历里面没有的内容,过往、兴趣爱好之类的
2.搭建指标体系自己去创建的还是从上到下要求看哪些指标
回答:一类是定方向,拆指标;二类是KPI,从上到下要求,需加一些维度、对比拆解看清数据
3.自定义指标时拿到的数据是什么
回答:先确定思路,一是数据库,二是数据产品,三是提数据需求
4.指标体系搭建完成后会应用到哪些地方
回答:监控-发现问题-业务沟通-业务调整、机制搭建
5.分析完,是否会下放到业务,再去做监控是否达到预期
回答:搭建思路和模板给到业务,定期监控是否达到预期
改善:前期会根据沟通结果跟进改善进度; 后期定期去做监控并复盘达成情况
6.指标不达标的情况下会做什么样的业务动作
回答:例如,KPI不达标,数据上拆解,沟通怎么达成的策略
7.组织架构
8.方法论沉淀

回答:发现的问题(场景)+数据表现+业务动作
9.如果专员达成效果比较差,会做什么业务动作
回答:和管理者沟通具体线下情况,特殊的原因导致效率低,培训,优化
10.不一定能保证业务结果一定达成,因为后面会涉及到管理动作的落地
回答:肯定想法,角色是事实呈现、业务达成思路识别、达成一

### 数据分析方向秋季招聘面试经验 #### 准备阶段 对于希望进入数据分析领域工作的求职者来说,充分准备是成功的关键。利用在线资源和技术平台来提升技能至关重要。推荐使用 LeetCode 和 牛客网这样的面试题库与练习平台,这些网站提供了丰富的数据科学题目以及算法挑战[^2]。 除了编程能力外,理解计算机网络的基础也是必要的,特别是 OSI 七层模型和 TCP/IP 协议栈的工作原理及其应用场景,这有助于处理实际工作中遇到的数据传输问题[^4]。 #### 技术谈要点 在技术面试环节中,通常会考察候选人对统计学、机器学习基础知识的理解程度;SQL 查询语句编写熟练度;Python 或 R 编程技巧;还有就是如何运用 Pandas, Numpy 等常用库来进行高效的数据操作。此外,能够清晰表达自己的思路并展示解决问题的能力同样重要。 #### 行为谈建议 行为类问题旨在评估候选人的软实力,比如团队合作精神、沟通能力和解决冲突的方法等。提前准备好 STAR 法则(Situation, Task, Action, Result)的故事框架可以帮助更好地应对这类提问方式。 #### 实战演练 为了增加实战感,可以参加由第三方机构提供的模拟面试服务或是加入专业的交流社群,在那里可以获得来自前辈们的宝贵意见和支持。同时也可以考虑接受职业咨询服务,它们往往拥有行业内的人脉关系网,可以通过内部推荐渠道获得更多的机会[^1]。 ```python import pandas as pd from sklearn.model_selection import train_test_split # 假设有一个CSV文件名为"data.csv" data = pd.read_csv('data.csv') # 对数据集做一些基本预处理工作 X_train, X_test, y_train, y_test = train_test_split(data.drop(columns=['target']), data['target'], test_size=0.3) print("训练集大小:", len(X_train)) print("测试集大小:", len(X_test)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值