06 Pytorch实现反向传播

反向传播

  上一篇博客大致介绍了反向传播,但是没有提及到计算图的概念。比如下面我以一个两层的神经网络为例,它的 y_hat 表达式为:
在这里插入图片描述
  
  下面我们来构建它的计算图:

在这里插入图片描述
  
  这里需要注意的是我们现在的一个两层的神经网络的 y_hat 可以展开为:

在这里插入图片描述
  
  然后我们发现不断地进行线性变换,不管你有多少层最后都会统一成 y = W ∗ x + b y = W*x + b y=Wx+b 的形式,也就是如下的计算图:

在这里插入图片描述
  
  也就是说层数多和层数少没什么区别。为了解决这个问题,就是要提高模型的复杂度。换句话说,就是不能将 y_hat 进行化简,化简之后增加权重完全没有意义。所以我们需要对每一层最终的输出加一个非线性的变换函数,也就是对每一层输出的向量里的每一个值都应用一个非线性的函数,比如像 Sigmoid 函数。

在这里插入图片描述
  
  接下来就说说反向传播过程中的求导,曾经在高等数学中学过链式求导法则(Chain Rule)。也就是说要把复合函数上每一步的偏导数进行累积,最后就求出了整体的导数。

在这里插入图片描述
  
  下面就来看看反向传播中链式求导的过程。链式求导的第一步首先要创建计算图(如下图),第一步就是前向传播(forward),它做的事情就是沿着图中的箭头,一步一步进行计算,直到得到 Loss。

在这里插入图片描述
  
  那么对于输出的结果 z z z ,首先要计算 L o s s Loss Loss 对于 z z z 的偏导。

在这里插入图片描述
  
  求出 L o s s Loss Loss 对于 z z z 的偏导之后,在经过 f f f 的时候,我们的目标是 L o s s Loss Loss w w w x x x 的导数,那么在这个计算过程中我们就使用链式法则。

在这里插入图片描述
  
  下面举个简单例子,比如 f = x ∗ w f = x * w f=xw,那么 f f f x x x 的导数等于权重 w w w f f f w w w 的导数等于 x x x,比如 x = 2 x = 2 x=2 w = 3 w = 3 w=3,那么就可以计算出 z = f = x ∗ w = 2 ∗ 3 = 6 z = f = x * w = 2 * 3 = 6 z=f=xw=23=6 ,最后可以通过 z z z 计算出相应的 Loss,这就是前向传播的过程。
  
  如果我们通过前向传播得到了 L L L z z z 的导数为 5,那么我们想要求出 L L L x x x w w w 的 导数,就先得求出 z z z x x x w w w 的 导数,通过链式法则求出 L L L x x x w w w 的 导数。

在这里插入图片描述
  
  有了这些导数之后,我们就能够做权重的更新了,以上就完成了反向传播的过程。
  
  下面我们再来看看 y_hat = x ∗ w x * w xw 完整的计算图。

在这里插入图片描述
  
  在我们得到了 Loss 等于 1 之后,我们开始反向传播。首先算出 Loss 对于 r r r 的梯度。

在这里插入图片描述
  
  接着计算 Loss 对于 y_hat 的梯度。
  
在这里插入图片描述
  
  最后算出 Loss 对 w w w 的导数。

在这里插入图片描述
  
  接下来介绍一下在 Pytorch 里面怎么进行前向传播和反向传播。首先,介绍一下 Pytorch 里面数据最基本的成员是 Tensor,它是用来存储数据的,它可以存标量,向量,矩阵或者高阶的 Tensor。它里面包含两个重要成员 data 和 grad。data 用来保存权重 w w w,grad 用来保存损失函数 Loss 对权重 w w w 的导数。

在这里插入图片描述


Pytorch实现反向传播

  下面我们具体进行编程实现前面例子中的前向传播和反向传播。
  
在这里插入图片描述
在这里插入图片描述


总结

  我们再来回顾一下整个计算过程:

  首先我们的 w w w 设置一个初始值,将 w w w 设置为需要梯度,然后就构建出整个计算图。

在这里插入图片描述
  
  构建出计算图之后,我们使用 backward 来反向计算 L L L w w w 的导数,就存放在 w . g r a d w.grad w.grad 成员里面。这里需要注意的是 grad 也是一个 Tensor,所以为了避免计算导数的时候构建计算图,需要使用 grad 中的成员 data 进行计算。

在这里插入图片描述
  
  以上就是参数 w w w 相应的更新过程。


  具体代码见 06 Pytorch实现反向传播.ipynb

反向传播算法是深度学习中的核心算法之一,它是用来计算神经网络中参数的梯度,并根据梯度更新参数,从而实现模型的训练。 在PyTorch中,实现反向传播算法的一般步骤如下: 1. 构建计算图:首先,需要定义神经网络模型,并将输入数据传递给模型进行前向计算,得到模型的输出结果。 2. 计算损失函数:根据模型的输出结果和标签数据,计算损失函数。PyTorch中提供了一些常用的损失函数,如交叉熵损失函数、均方误差损失函数等,可以根据具体情况进行选择。 3. 计算梯度:通过调用损失函数的backward()方法,计算损失函数对每个参数的梯度。在计算梯度之前,需要将梯度清零,以避免之前的梯度对当前梯度的影响。 4. 参数更新:根据梯度信息和优化算法,更新模型的参数。PyTorch中提供了一些常用的优化算法,如随机梯度下降、Adam等。 下面是一个简单的示例代码,实现了一个简单的全连接神经网络,并使用反向传播算法进行训练: ```python import torch import torch.nn as nn import torch.optim as optim # 定义网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 定义输入数据和标签数据 inputs = torch.randn(1, 10) labels = torch.randn(1, 1) # 定义损失函数和优化算法 net = Net() criterion = nn.MSELoss() optimizer = optim.SGD(net.parameters(), lr=0.01) # 计算模型输出和损失函数 outputs = net(inputs) loss = criterion(outputs, labels) # 计算梯度并更新参数 optimizer.zero_grad() loss.backward() optimizer.step() ``` 在上面的代码中,首先定义了一个全连接神经网络模型,包含两个线性层。然后,定义了输入数据和标签数据。接着,定义了损失函数和优化算法,并将模型的参数传递给优化器。在每次训练迭代中,计算模型的输出结果和损失函数,然后使用反向传播算法计算梯度,并使用优化算法更新模型的参数。 需要注意的是,PyTorch中的反向传播算法是自动求导的,即不需要手动计算梯度,只需要通过调用backward()方法即可。另外,在每次迭代中,需要将梯度清零,否则会累加之前的梯度,导致结果不正确。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值