2020广东工业大学810自控原理

1、
胡寿松第一章课后习题第三题

2、
(1)
由系统的闭环传递函数可知
ζ = 0.5 ω n = 2 \zeta=0.5 \quad \omega_n=2 ζ=0.5ωn=2
零初始状态下超调量
σ = e − π ζ 1 − ζ 2 × 100 % = 16.3 % \sigma=e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\%=16.3\% σ=e1ζ2 πζ×100%=16.3%
调节时间
t s = 4.4 ζ ω n = 4.4 s t_s=\frac{4.4}{\zeta\omega_n}=4.4s ts=ζωn4.4=4.4s
(2)
考虑初始条件
Y ( s ) = 4 s 2 + 2 s + 4 R ( s ) + [ y ( 0 ) s + y ˙ ( 0 ) ] + 2 y ( 0 ) s 2 + 2 s + 4 = 4 s 2 + 2 s + 4 R ( s ) + 0.5 s + 1 s 2 + 2 s + 4 = 4 s ( s 2 + 2 s + 4 ) + 1 2 s + 1 ( s + 1 ) 2 + 3 + 1 6 3 ( s + 1 ) 2 + 3 \begin{aligned} Y(s)&=\frac{4}{s^2+2s+4}R(s)+\frac{[y(0)s+\dot{y}(0)]+2y(0)}{s^2+2s+4} \\ &=\frac{4}{s^2+2s+4}R(s)+\frac{0.5s+1}{s^2+2s+4} \\ &=\frac{4}{s(s^2+2s+4)}+\frac{1}{2}\frac{s+1}{(s+1)^2+3}+\frac{1}{6}\frac{3}{(s+1)^2+3} \end{aligned} Y(s)=s2+2s+44R(s)+s2+2s+4[y(0)s+y˙(0)]+2y(0)=s2+2s+44R(s)+s2+2s+40.5s+1=s(s2+2s+4)4+21(s+1)2+3s+1+61(s+1)2+33
对上式取拉氏反变换
y ( t ) = 1 − 2 3 3 e − t sin ⁡ ( 3 t + π 3 ) + 1 2 e − t cos ⁡ 3 t + 1 6 e − t sin ⁡ 3 t y(t)= 1-\frac{2\sqrt{3}}{3}e^{-t}\sin(\sqrt{3}t+\frac{\pi}{3})+\frac{1}{2}e^{-t}\cos\sqrt{3}t+\frac{1}{6}e^{-t}\sin\sqrt{3}t y(t)=1323 etsin(3 t+3π)+21etcos3 t+61etsin3 t
t = 1 t=1 t=1
y ( 1 ) = 0.933 s y(1)=0.933s y(1)=0.933s

3、
(1)
系统的根轨迹方程
K s ( s + 4 ) ( s + 8 ) = − 1 \frac{K}{s(s+4)(s+8)}=-1 s(s+4)(s+8)K=1
①根轨迹的起点
p 1 = 0 , p 2 = − 4 , p 3 = − 8 p_1=0,\quad p_2=-4,\quad p_3=-8 p1=0,p2=4,p3=8
②根轨迹的终点为无穷远处

③实轴上的根轨迹: ( − ∞ , − 8 ] , [ − 4 , 0 ] (-\infin,-8],\quad [-4,0] (,8],[4,0]

④根轨迹渐近线
0 − 4 − 8 3 = − 4 , φ 1 = 60 ° , φ 2 = 300 ° \frac{0-4-8}{3}=-4, \quad \varphi_1=60°, \quad \varphi_2=300° 3048=4,φ1=60°,φ2=300°
⑤根轨迹的分离点:
W ( s ) = s 3 + 12 s 2 + 32 s d W ( s ) d s = 3 s 2 + 24 s + 32 = 0 s 1 = − 1.69 ( 分 离 点 ) , s 2 = − 6.31 ( 舍 去 ) \begin{gathered} W(s)=s^3+12s^2+32s \\ \frac {dW(s)}{ds}=3s^2+24s+32=0 \\ s_1=-1.69(分离点),\quad s_2=-6.31(舍去) \end{gathered} W(s)=s3+12s2+32sdsdW(s)=3s2+24s+32=0s1=1.69(),s2=6.31()
⑥根轨迹与虚轴的交点
系统的特征方程
D ( s ) = s 3 + 12 s 2 + 32 s + K = 0 D(s)=s^3+12s^2+32s+K=0 D(s)=s3+12s2+32s+K=0
s = j ω s=j\omega s=jω
D ( j ω ) = − j ω 3 − 12 ω 2 + 32 j ω + K = ( K − 12 ω 2 ) + j ( 32 ω − ω 3 ) = 0 \begin{aligned} D(j\omega)&=-j\omega ^3-12\omega ^2+32j\omega+K \\ &=(K-12\omega ^2)+j(32\omega-\omega ^3)=0 \end{aligned} D(jω)=jω312ω2+32jω+K=(K12ω2)+j(32ωω3)=0
令实部和虚部为零,可得
{ K = 384 ω = 5.66 \left\{\begin{array}{l} K = 384 \\ \omega = 5.66 \end{array}\right. {K=384ω=5.66
图略
(2)
由(1)可知,系统稳定时, 0 < K < 382 0<K<382 0<K<382
(3)
将分离点代入特征方程解得 K = 93.18 K=93.18 K=93.18,系统单位阶跃响应无超调时, 0 < K < 93.18 0<K<93.18 0<K<93.18
(4)
设极点为 s 1 , 2 = − a ± 3 a j s_{1,2}=-a\pm\sqrt{3}aj s1,2=a±3 aj,由根之和得 s 3 = 12 − 2 a s_3=12-2a s3=122a,则
D ( s ) = s 3 + 12 s 2 + 32 s + K = ( s + a + 3 a j ) ( s + a − 3 a j ) ( s + 12 − 2 a ) = s 3 + 12 s 2 + 2 a ( 12 − 2 a ) s + 4 a 2 ( 12 − 2 a ) \begin{aligned} D(s)&=s^3+12s^2+32s+K \\ &=(s+a+\sqrt{3}aj)(s+a-\sqrt{3}aj)(s+12-2a) \\ &=s^3+12s^2+2a(12-2a)s+4a^2(12-2a) \end{aligned} D(s)=s3+12s2+32s+K=(s+a+3 aj)(s+a3 aj)(s+122a)=s3+12s2+2a(122a)s+4a2(122a)
比较系数解得
{ K = 83.52 a = 1.53 \left\{\begin{array}{l} K = 83.52 \\ a = 1.53 \end{array}\right. {K=83.52a=1.53
极点分别为
s 1 , 2 = − 1.53 ± 2.65 j , s 3 = − 8.94 s_{1,2}=-1.53\pm2.65j,\quad s_3=-8.94 s1,2=1.53±2.65j,s3=8.94
第三个极点的模是共轭复数极点实部的模 5.8 5.8 5.8倍,这对共轭复数极点是闭环系统的主导极点,降阶后开环系统的传递函数为
G ( s ) = 9.57 s 2 + 3.06 s + 9.3694 G(s)=\frac{9.57}{s^2+3.06s+9.3694} G(s)=s2+3.06s+9.36949.57
闭环传递函数为
Φ ( s ) = 9.57 s 2 + 3.06 s + 18.9334 \varPhi(s)=\frac{9.57}{s^2+3.06s+18.9334} Φ(s)=s2+3.06s+18.93349.57

4、
(1)
系统的频率特性
G ( j ω ) = − 0.5 ( ω 2 + 1 ) ( 0.25 ω 2 + 1 ) + j 0.5 ω 2 + 1 ω ( ω 2 + 1 ) ( 0.25 ω 2 + 1 ) G(j\omega)=-\frac{0.5}{(\omega^2+1)(0.25\omega^2+1)}+j\frac{0.5\omega^2+1}{\omega(\omega^2+1)(0.25\omega^2+1)} G(jω)=(ω2+1)(0.25ω2+1)0.5+jω(ω2+1)(0.25ω2+1)0.5ω2+1
ω → 0 + \omega\rarr0^+ ω0+
R e [ G ( j ω ) ] = − 0.5 , ∠ G ( j ω ) = − 270 ° Re[G(j\omega)]=-0.5,\quad \angle G(j\omega)=-270° Re[G(jω)]=0.5,G(jω)=270°
奈奎斯曲线与负实轴无交点,图略
(2)
由系统的开环传递函数可知, P = 1 P=1 P=1,正穿越 N − = 0.5 N_-=0.5 N=0.5,则
Z = P + 2 N − = 2 Z=P+2N_-=2 Z=P+2N=2
系统不稳定,闭环系统在 s s s右半平面有2个极点
(3)
系统的特征方程
D ( s ) = s 3 + s 2 − 2 s + 1 D(s)=s^3+s^2-2s+1 D(s)=s3+s22s+1
劳斯表
s 3 1 − 2 s 2 1 1 s 1 − 3 s 0 1 \begin{matrix} s^3& 1 & -2 & \\ s^2& 1 & 1 & \\ s^1& -3 & & \\ s^0& 1 \end{matrix} s3s2s1s0113121
劳斯表第一列不均大于 0 0 0,且变号两次,闭环系统在 s s s右半平面有2个极点

5、
(1)
当系统的相角裕度为 γ = 30 ° \gamma=30° γ=30°
90 ° − arctan ⁡ ω c − arctan ⁡ 0.5 ω c = 30 ° 90°-\arctan\omega_c-\arctan0.5\omega_c=30° 90°arctanωcarctan0.5ωc=30°
解得
ω c = 0.792 r a d / s \omega_c=0.792rad/s ωc=0.792rad/s
代入系统的幅频特性
10 K ω c ω c 2 + 1 0.25 ω c 2 + 1 = 1 \frac{10K}{\omega_c\sqrt{\omega_c^2+1}\sqrt{0.25\omega_c^2+1}}=1 ωcωc2+1 0.25ωc2+1 10K=1
解得
K = 0.109 K=0.109 K=0.109
(2)
设滞后校正装置的传递函数为
G c s = K c ( T s + 1 ) β T s + 1 G_c{s}=\frac{K_c(Ts+1)}{\beta Ts+1} Gcs=βTs+1Kc(Ts+1)
输入 r ( t ) = t r(t)=t r(t)=t时系统的稳态误差为 e s s = 0.2 e_{ss}=0.2 ess=0.2,则
K c = 0.5 K_c=0.5 Kc=0.5
此时,系统的截止频率为
5 ω c ω c 2 + 1 0.25 ω c 2 + 1 = 1 \frac{5}{\omega_c\sqrt{\omega_c^2+1}\sqrt{0.25\omega_c^2+1}}=1 ωcωc2+1 0.25ωc2+1 5=1
解得
ω c = 1.802 r a d / s \omega_c=1.802rad/s ωc=1.802rad/s
相角裕度为
γ = 180 ° − 90 ° − arctan ⁡ ω c − arctan ⁡ 0.5 ω c = − 12.991 ° \gamma=180°-90°-\arctan\omega_c-\arctan0.5\omega_c=-12.991° γ=180°90°arctanωcarctan0.5ωc=12.991°
取相应的相角裕度
γ 1 = 46 ° \gamma_1=46° γ1=46°
对应的截止频率为
90 ° − arctan ⁡ ω c 1 − arctan ⁡ 0.5 ω c 1 = 46 ° 90°-\arctan\omega_{c1}-\arctan0.5\omega_{c1}=46° 90°arctanωc1arctan0.5ωc1=46°
解得
ω c 1 = 0.547 r a d / s \omega_{c1}=0.547rad/s ωc1=0.547rad/s
20 lg ⁡ ∣ G 1 ( j ω c 1 ) ∣ = 20 lg ⁡ β 20\lg|G_1(j\omega_{c1})|=20\lg\beta 20lgG1(jωc1)=20lgβ,解得
β = 7.735 \beta=7.735 β=7.735
选取 1 T = 0.2 ω c \frac{1}{T}=0.2\omega_c T1=0.2ωc T = 9.14 T=9.14 T=9.14,则
G c s = 0.5 ( 9.14 s + 1 ) 70.6979 s + 1 G_c{s}=\frac{0.5(9.14s+1)}{70.6979s+1} Gcs=70.6979s+10.5(9.14s+1)

6、
(1)
系统的特征方程
D ( s ) = s 3 + 6 s 2 + ( 9 + K ) s + K a = 0 D(s)=s^3+6s^2+(9+K)s+Ka=0 D(s)=s3+6s2+(9+K)s+Ka=0
将极点 s 1 = − 2 + 4 j s_1=-2+4j s1=2+4j代入上式,解得
{ K = 19 a = 40 19 \left\{\begin{array}{l} K = 19 \\ a = \frac{40}{19} \end{array}\right. {K=19a=1940
由根之和解得
s 3 = − 2 s_3=-2 s3=2
第三个极点与系统的闭环零点组成偶极子,所以这对共轭复数极点是闭环系统的主导极点,降阶后系统的闭环传递函数为
Φ ( s ) = 19 s 2 + 4 s + 20 \varPhi(s)=\frac{19}{s^2+4s+20} Φ(s)=s2+4s+2019
由系统的闭环传递函数可知
ζ = 5 5 ω n = 2 5 \zeta=\frac{\sqrt{5}}{5} \quad \omega_n=2\sqrt{5} ζ=55 ωn=25
零初始状态下超调量
σ = e − π ζ 1 − ζ 2 × 100 % = 20.79 % \sigma=e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\%=20.79\% σ=e1ζ2 πζ×100%=20.79%
调节时间
t s = 4.4 ζ ω n = 2.2 s t_s=\frac{4.4}{\zeta\omega_n}=2.2s ts=ζωn4.4=2.2s
(2)
G c = K p ′ G_c=K^{'}_p Gc=Kp时,系统的特征方程为
D ( s ) = s 3 + 6 s 2 + 9 s + K = 0 D(s)=s^3+6s^2+9s+K=0 D(s)=s3+6s2+9s+K=0
s = j ω s=j\omega s=jω
D ( j ω ) = − j ω 3 − 6 ω 2 + 9 j ω + K = ( K − 6 ω 2 ) + j ( 9 ω − ω 3 ) = 0 \begin{aligned} D(j\omega)&=-j\omega ^3-6\omega ^2+9j\omega+K \\ &=(K-6\omega ^2)+j(9\omega-\omega ^3)=0 \end{aligned} D(jω)=jω36ω2+9jω+K=(K6ω2)+j(9ωω3)=0
令实部和虚部为零,可得
{ K = 54 ω = 3 r a d / s \left\{\begin{array}{l} K = 54 \\ \omega = 3 rad/s \end{array}\right. {K=54ω=3rad/s
等幅振荡周期为
P = 2 π ω = 2.09 P=\frac{2\pi}{\omega}=2.09 P=ω2π=2.09
根据表可得
K p = 32.4. T i = 1.045 , T d = 0.26125 K_p=32.4.\quad T_i=1.045,\quad T_d=0.26125 Kp=32.4.Ti=1.045,Td=0.26125
引入比例控制,根据表可得系统的开环传递函数为
G 1 ( s ) = 27 s ( s + 3 ) 2 G_1(s)=\frac{27}{s(s+3)^2} G1(s)=s(s+3)227
比例控制可以提高系统的开环增益,使稳态误差减少,但是 K p K_p Kp过大,会影响系统的稳定性,导致系统不稳定。
再引入积分控制,根据表可得系统的开环传递函数为
G 2 ( s ) = 24.3 1.74097 1.74097 s + 1 s 2 ( s + 3 ) 2 G_2(s)=\frac{24.3}{1.74097}\frac{1.74097s+1}{s^2(s+3)^2} G2(s)=1.7409724.3s2(s+3)21.74097s+1
积分控制可以提高系统的型别,消除或减少稳态误差,使系统的稳态性能得到改善,但稳定裕度减少,同时还引进一个开环零点,改善系统的动态性能。
最后引入微分控制,根据表可得系统的开环传递函数为
G 3 ( s ) = 32.4 1.045 0.27300625 s 2 + 1.045 s + 1 s 2 ( s + 3 ) 2 G_3(s)=\frac{32.4}{1.045}\frac{0.27300625s^2+1.045s+1}{s^2(s+3)^2} G3(s)=1.04532.4s2(s+3)20.27300625s2+1.045s+1
微分控制给系统增加一个零点,提高系统的响应速度,改善系统的动态性能。

7、
由于 M > h M>h M>h,两个非线性特性串联得到一个理想继电特性,其中 M = 1 M=1 M=1,图略。系统线性部分的幅值为
ω x = 1 T 1 T 2 = 3 3 , G ( j ω x ) = − K T 1 T 2 T 1 + T 2 = − 1 \omega_x=\frac{1}{\sqrt{T_1T_2}}=\frac{\sqrt{3}}{3},\quad G(j\omega_x)=\frac{-KT_1T_2}{T_1+T_2}=-1 ωx=T1T2 1=33 ,G(jωx)=T1+T2KT1T2=1
非线性部分
− 1 N ( A ) = − π A 4 , − 1 N ( 0 ) = 0 , − 1 N ( ∞ ) = − ∞ -\frac{1}{N(A)}=-\frac{\pi A}{4},\quad -\frac{1}{N(0)}=0,\quad -\frac{1}{N(\infin)}=-\infin N(A)1=4πA,N(0)1=0,N()1=
图略。 Γ G \Gamma_G ΓG − 1 / N ( A ) -1/N(A) 1/N(A)的交点为 ( − 1 , 0 ) (-1,0) (1,0) − 1 / N ( A ) -1/N(A) 1/N(A)曲线沿着 A A A增大的方向由不稳定区域进入稳定区域,该点的周期运动是稳定的,对应的自振频率为
ω = 3 3 \omega=\frac{\sqrt{3}}{3} ω=33
R e [ G ( j ω ) N ( A ) ] = − 1 Re[G(j\omega)N(A)]=-1 Re[G(jω)N(A)]=1可解得自振振幅为
A = 4 π A=\frac{4}{\pi} A=π4

8、
(1)
系统的脉冲传递函数
G ( z ) = ( 1 − z − 1 ) Z [ K s ( s + 1 ) ] = 0.632 K z − 0.368 G(z)=(1-z^{-1})Z[\frac{K}{s(s+1)}]=\frac{0.632K}{z-0.368} G(z)=(1z1)Z[s(s+1)K]=z0.3680.632K
系统的特征方程
D ( z ) = ( 0.632 K + 0.632 ) z + ( 1.368 − 0.632 K ) D(z)=(0.632K+0.632)z+(1.368-0.632K) D(z)=(0.632K+0.632)z+(1.3680.632K)
对上式进行双线变换
D ( w ) = − K w + 3 K + 2 D(w)=-Kw+3K+2 D(w)=Kw+3K+2
系数大于零,系统稳定,则 − 2 3 < K < 2.164 -\frac{2}{3}<K<2.164 32<K<2.164
(2)
K = 1 , r ( t ) = 1 ( t ) K=1,\quad r(t)=1(t) K=1,r(t)=1(t)时,系统输出为
Y ( z ) = 0.632 z ( z − 1 ) ( z + 0.264 ) Y(z)=\frac{0.632z}{(z-1)(z+0.264)} Y(z)=(z1)(z+0.264)0.632z
长除法可得
Y ( z ) = 0.632 z − 1 + 0.465122 z − 2 + 0.34232832 z − 3 + ⋯ Y(z)=0.632z^{-1}+0.465122z^{-2}+0.34232832z^{-3}+\cdots Y(z)=0.632z1+0.465122z2+0.34232832z3+
对上式进行变换
y ( k ) = 0.632 y ( k − 1 ) + 0.465122 y ( k − 2 ) + 0.34232832 y ( k − 3 ) + ⋯ y(k)=0.632y(k-1)+0.465122y(k-2)+0.34232832y(k-3)+\cdots y(k)=0.632y(k1)+0.465122y(k2)+0.34232832y(k3)+
或者由系统的闭环传递函数可得
( z + 0.264 ) Y ( z ) = 0.632 R ( z ) (z+0.264)Y(z)=0.632R(z) (z+0.264)Y(z)=0.632R(z)
对上式进行变换
0.264 y ( k ) = − y ( k − 1 ) + 0.632 ⋅ 1 ( t ) 0.264y(k)=-y(k-1)+0.632\cdot 1(t) 0.264y(k)=y(k1)+0.6321(t)
(3)
系统的误差传递函数为
Φ e ( z ) = z − 0.368 z + 0.632 K − 0.368 \varPhi_e(z)=\frac{z-0.368}{z+0.632K-0.368} Φe(z)=z+0.632K0.368z0.368
由终值定理可得系统的稳态误差为
e s s ( ∞ ) = lim ⁡ z → 1 = ( z − 1 ) R ( z ) Φ e ( z ) = z ( z − 0.368 ) z + 0.632 K − 0.368 = 0.632 + 0.632 K − 0.368 e_{ss}(\infin)=\lim\limits_{z\rightarrow1}=(z-1)R(z)\varPhi_e(z)=\frac{z(z-0.368)}{z+0.632K-0.368}=\frac{0.632}{+0.632K-0.368} ess()=z1lim=(z1)R(z)Φe(z)=z+0.632K0.368z(z0.368)=+0.632K0.3680.632

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页