2021中国科学技术大学845自动控制理论参考答案

一、(2021.12.21改)

1.输入回路
U i = R 1 I 1 + U v U_i=R_1I_1+U_v Ui=R1I1+Uv
输出回路
U o = − R 2 I 2 + U v U_o=-R_2I_2+U_v Uo=R2I2+Uv
中间回路
R 1 I 1 = − ( R 2 + 1 C 2 s ) I 2 \xcancel{ R_1I_1=-(R_2+\frac{1}{C_2s})I_2 } R1I1=(R2+C2s1)I2
R 1 I 1 = − ( R 2 + 1 C 1 s ) I 2 R_1I_1=-(R_2+\frac{1}{C_1s})I_2 R1I1=(R2+C1s1)I2
其中
U v = ( I 1 − I 2 ) 1 C 2 s U_v=(I_1-I_2)\frac{1}{C_2s} Uv=(I1I2)C2s1
综上可得
在这里插入图片描述

2.(注:以前做的太复杂了,而且算错了,现在删了换种方法)
取电容 C 1 C_1 C1 C 2 C_2 C2上的电压分别为 u c 1 u_{c_1} uc1 u c 2 u_{c_2} uc2,设状态变量为 x 1 x_1 x1 x 2 x_2 x2,且选项 x 1 = u c 1 x_1=u_{c_1} x1=uc1 x 2 = u c 2 x_2=u_{c_2} x2=uc2,输入、输出变量分别为 u = U i u=U_i u=Ui y = U o y=U_o y=Uo。设 R 1 R_1 R1 C 2 C_2 C2之间的节点为 A A A R 2 R_2 R2 C 1 C_1 C1之间的节点为 B B B,对于节点 A A A
i 1 − i 2 = u i − u c 2 R 1 − u i − u c 2 R 2 = C 2 u ˙ c 2 i_1-i_2=\frac{u_i-u_{c2}}{R_1}-\frac{u_i-u_{c2}}{R_2}=C_2\dot{u}_{c2} i1i2=R1uiuc2R2uiuc2=C2u˙c2
对于节点 B B B
− i 2 = u o − u c 2 R 2 = C 1 u ˙ c 1 -i_2=\frac{u_o-u_{c2}}{R_2}=C_1\dot{u}_{c1} i2=R2uouc2=C1u˙c1

u o = u i − u c 1 u_o=u_i-u_{c1} uo=uiuc1
代入上述两式,可得方程组
u ˙ c 1 = − 1 R 2 C 1 u c 1 − 1 R 2 C 1 u c 2 + 1 R 2 C 1 u i u ˙ c 2 = − 1 R 2 C 2 u c 1 − ( 1 R 2 C 2 + 1 R 1 C 2 ) u c 2 + − ( 1 R 2 C 2 + 1 R 1 C 2 ) u i u o = u i − u c 1 \dot{u}_{c1}=-\cfrac{1}{R_2C_1}u_{c1}-\cfrac{1}{R_2C_1}u_{c2}+\cfrac{1}{R_2C_1}u_i \\ \dot{u}_{c2}=-\cfrac{1}{R_2C_2}u_{c1}-\left(\cfrac{1}{R_2C_2}+\cfrac{1}{R_1C_2}\right)u_{c2}+-\left(\cfrac{1}{R_2C_2}+\cfrac{1}{R_1C_2}\right)u_i \\ u_o=u_i-u_{c1} u˙c1=R2C11uc1R2C11uc2+R2C11uiu˙c2=R2C21uc1(R2C21+R1C21)uc2+(R2C21+R1C21)uiuo=uiuc1
写成状态空间方程形式
x ˙ = [ − 1 R 2 C 1 − 1 R 2 C 1 − 1 R 2 C 2 − 1 R 2 C 2 − 1 R 1 C 2 ] x + [ 1 R 2 C 1 1 R 2 C 2 + 1 R 1 C 2 ] u y = [ − 1 0 ] x + u \begin{aligned} \dot{x}&= \begin{bmatrix} -\cfrac{1}{R_2C_1} & -\cfrac{1}{R_2C_1} \\ -\cfrac{1}{R_2C_2} & -\cfrac{1}{R_2C_2}-\cfrac{1}{R_1C_2} \\ \end{bmatrix} x+ \begin{bmatrix} \cfrac{1}{R_2C_1} \\ \cfrac{1}{R_2C_2}+\cfrac{1}{R_1C_2} \end{bmatrix} u \\ y &= \begin{bmatrix} -1 & 0 \\ \end{bmatrix} x+u \end{aligned} x˙y=R2C11R2C21R2C11R2C21R1C21x+R2C11R2C21+R1C21u=[10]x+u

3.方框图化简可得系统的传递函数
U o ( s ) U i ( s ) = R 1 R 2 C 1 C 2 s 2 + ( R 1 + R 2 ) C 1 s + 1 R 1 R 2 C 1 C 2 s 2 + ( R 1 C 1 + R 2 C 2 + R 2 C 1 ) s + 1 \frac{U_o(s)}{U_i(s)}=\frac{R_1R_2C_1C_2s^2+(R_1+R_2)C_1s+1}{R_1R_2C_1C_2s^2+(R_1C_1+R_2C_2+R_2C_1)s+1} Ui(s)Uo(s)=R1R2C1C2s2+(R1C1+R2C2+R2C1)s+1R1R2C1C2s2+(R1+R2)C1s+1
由状态空间方程求得系统的传递函数
U o ( s ) U i ( s ) = C ( s I − A ) − 1 B + D = R 1 R 2 C 1 C 2 s 2 + ( R 1 + R 2 ) C 1 s + 1 R 1 R 2 C 1 C 2 s 2 + ( R 1 C 1 + R 2 C 2 + R 2 C 1 ) s + 1 \begin{aligned} \frac{U_o(s)}{U_i(s)}&=C(sI-A)^{-1}B+D\\ &=\frac{R_1R_2C_1C_2s^2+(R_1+R_2)C_1s+1}{R_1R_2C_1C_2s^2+(R_1C_1+R_2C_2+R_2C_1)s+1} \end{aligned} Ui(s)Uo(s)=C(sIA)1B+D=R1R2C1C2s2+(R1C1+R2C2+R2C1)s+1R1R2C1C2s2+(R1+R2)C1s+1

二、(2022.11.26改)

  1. a : 0 → + ∞ a:0\rightarrow+\infin a:0+,系统的根轨迹方程为
    a s 2 s 2 + 4 s + 4 = − 1 a\frac{s}{2s^2+4s+4}=-1 a2s2+4s+4s=1
    n = 2 n=2 n=2 m = 1 m=1 m=1,根轨迹有 2 2 2条分支
    ②根轨迹的起点: p 1 , 2 = − 1 ± j p_{1,2}=-1\pm j p1,2=1±j
    ③根轨迹的终点: z = − 1 z=-1 z=1
    ④实轴上的根轨迹: ( − ∞ , 0 ] (-\infin,0] (,0]
    ⑤根轨迹的汇合点:
    1 d − 1 + j + 1 d − 1 − j = 1 d d 2 − 4 d − 2 = 0 d 1 = − 0.449 ( 会 合 点 ) , d 2 = 4.449 ( 舍 去 ) d 2 − 2 = 0 d 1 = − 1.41 ( 会 合 点 ) , d 2 = 1.41 ( 舍 去 ) \frac{1}{d-1+j}+\frac{1}{d-1-j}=\frac{1}{d} \\ \xcancel{d^2-4d-2=0} \\ \xcancel{d_1=-0.449(会合点),\quad d_2=4.449(舍去)} \\ d^2-2=0 \\ d_1=-1.41(会合点),\quad d_2=1.41(舍去) d1+j1+d1j1=d1d24d2=0 d1=0.449,d2=4.449 d22=0d1=1.41,d2=1.41
    ⑥根轨迹与虚轴交点为原点
    ⑦根轨迹出射角
    θ p 1 = 180 ° + ( 180 ° − arctan ⁡ 1 1 − 0 ) − 90 ° = 225 ° \theta_{p_1}=180°+(180°-\arctan\frac{1}{1-0})-90°=225° θp1=180°+(180°arctan101)90°=225°
    对称 θ p 2 = − 225 ° \theta_{p_2}=-225° θp2=225°
    图略。
    a : − ∞ → 0 a:-\infin\rightarrow0 a:0,令 a ∗ = − a a^*=-a a=a,系统的根轨迹方程为
    a ∗ s 2 s 2 + 4 s + 4 = 1 a^*\frac{s}{2s^2+4s+4}=1 a2s2+4s+4s=1
    n = 2 n=2 n=2 m = 1 m=1 m=1,根轨迹有 2 2 2条分支
    ②根轨迹的起点: p 1 , 2 = − 1 ± j p_{1,2}=-1\pm j p1,2=1±j
    ③根轨迹的终点: z = − 1 z=-1 z=1
    ④实轴上的根轨迹: [ 0 , + ∞ ] [0,+\infin] [0,+]
    ⑤根轨迹的汇合点:
    1 d − 1 + j + 1 d − 1 − j = 1 d d 2 − 4 d − 2 = 0 d 1 = − 0.449 ( 舍 去 ) , d 2 = 4.449 ( 会 合 点 ) d 2 − 2 = 0 d 1 = − 1.41 ( 舍 去 ) , d 2 = + 1 , 41 ( 会 合 点 ) \frac{1}{d-1+j}+\frac{1}{d-1-j}=\frac{1}{d} \\ \xcancel{d^2-4d-2=0} \\ \xcancel{d_1=-0.449(舍去),\quad d_2=4.449(会合点)}\\ d^2-2=0 \\ d_1=-1.41(舍去),\quad d_2=+1,41(会合点) d1+j1+d1j1=d1d24d2=0 d1=0.449,d2=4.449 d22=0d1=1.41,d2=+1,41
    ⑥根轨迹与虚轴交点:系统的特征方程
    Δ ( s ) = 2 s 2 + ( 4 − a ∗ ) s + 4 \Delta(s)=2s^2+(4-a^*)s+4 Δ(s)=2s2+(4a)s+4
    s = j ω s=j\omega s=jω
    Δ ( j ω ) = ( 4 − 2 ω 2 ) + j ω ( 4 − a ∗ ) \Delta(j\omega)=(4-2\omega^2)+j\omega(4-a^*) Δ(jω)=(42ω2)+jω(4a)
    令虚部为零,解得
    a ∗ = 4 , a = − 4 , ω = 2 a^*=4,\quad a=-4,\quad\omega=\sqrt2 a=4,a=4,ω=2
    ⑦根轨迹出射角
    θ p 1 = ( 180 ° − arctan ⁡ 1 1 − 0 ) − 90 ° = 45 ° \theta_{p_1}=(180°-\arctan\frac{1}{1-0})-90°=45° θp1=(180°arctan101)90°=45°
    对称 θ p 2 = − 45 ° \theta_{p_2}=-45° θp2=45°
    图略。
    2.当 a : 0 → + ∞ a:0\rightarrow+\infin a:0+,由系统的特征方程可得到会合点处 a = 5.806   a = − 7.53 \xcancel{a=5.806}\ a=-7.53 a=5.806  a=7.53,当 a : − ∞ → 0 a:-\infin\rightarrow0 a:0,根轨迹与虚轴相交时, a = − 4 a=-4 a=4。因此,当 − 4 < a < 5.806   − 4 < a < 7.53 \xcancel{-4<a<5.806}\ -4<a<7.53 4<a<5.806  4<a<7.53时,系统的阶跃响应振荡收敛。
    3.系统的误差传递函数为
    Φ e ( s ) = s 2 + 4 s + 4 2 s 2 + ( 4 + a ) s + 4 \Phi_e(s)=\frac{s^2+4s+4}{2s^2+(4+a)s+4} Φe(s)=2s2+(4+a)s+4s2+4s+4
    阶跃响应下,系统的稳态误差为
    lim ⁡ s → 0 s R ( s ) Φ e ( s ) = K \lim_{s\rightarrow0}sR(s)\Phi_e(s)=K s0limsR(s)Φe(s)=K
    a a a对阶跃响应下的稳态误差无影响。误差传递函数的幅频特性为
    A ( ω ) = ( 1 − ω 2 4 ) 2 + ω 2 2 ( 1 − ω 2 2 ) 2 + ( 2 + 0.5 a ) 2 4 ω 2 A(\omega)=\frac{\sqrt{(1-\cfrac{\omega^2}{4})^2+\omega^2}}{2\sqrt{(1-\cfrac{\omega^2}{2})^2+\cfrac{(2+0.5a)^2}{4}\omega^2}} A(ω)=2(12ω2)2+4(2+0.5a)2ω2 (14ω2)2+ω2
    相频特性为
    φ ( ω ) = arctan ⁡ ω 1 − ω 2 − arctan ⁡ 2 + 0.5 a 4 ω 1 − ω 2 2 \varphi(\omega)=\arctan\frac{\omega}{1-\omega^2}-\arctan\frac{\cfrac{2+0.5a}{4}\omega}{1-\cfrac{\omega^2}{2}} φ(ω)=arctan1ω2ωarctan12ω242+0.5aω
    正弦信号下,误差输出为
    e ( t ) = ( 1 − ω 2 4 ) 2 + ω 2 2 ( 1 − ω 2 2 ) 2 + ( 2 + 0.5 a ) 2 4 ω 2 s i n ( t + arctan ⁡ ω 1 − ω 2 − arctan ⁡ 2 + 0.5 a 4 ω 1 − ω 2 2 ) e(t)=\frac{\sqrt{(1-\cfrac{\omega^2}{4})^2+\omega^2}}{2\sqrt{(1-\cfrac{\omega^2}{2})^2+\cfrac{(2+0.5a)^2}{4}\omega^2}}sin(t+\arctan\frac{\omega}{1-\omega^2}-\arctan\frac{\cfrac{2+0.5a}{4}\omega}{1-\cfrac{\omega^2}{2}}) e(t)=2(12ω2)2+4(2+0.5a)2ω2 (14ω2)2+ω2 sin(t+arctan1ω2ωarctan12ω242+0.5aω)
    a a a增大时,正弦信号下稳态误差减少。

三、

由图可知,对数幅频特性曲线从点 ( 0 , 0 ) (0,0) (0,0)开始,则 K = 1 K=1 K=1。系统的谐振频率为 ω r = 29 \omega_r=29 ωr=29,谐振峰值为 M r = 6.30 M_r=6.30 Mr=6.30,设系统的开环传递函数为
G ( s ) = 1 s 2 ω n 2 + 2 ζ s ω n + 1 G(s)=\frac{1}{\cfrac{s^2}{\omega_n^2}+\cfrac{2\zeta s}{\omega_n}+1} G(s)=ωn2s2+ωn2ζs+11

ω r = ω n 1 − 2 ζ 2 , M r = 1 2 ζ 1 − ζ 2 \omega_r=\omega_n\sqrt{1-2\zeta^2},\quad M_r=\frac{1}{2\zeta\sqrt{1-\zeta^2}} ωr=ωn12ζ2 ,Mr=2ζ1ζ2 1
解得
ζ = 0.080 , ω n = 29.092 \zeta=0.080,\quad \omega_n=29.092 ζ=0.080,ωn=29.092
系统的开环传递函数为
G ( s ) = 846.344 s 2 + 4.655 s + 846.344 G(s)=\frac{846.344}{s^2+4.655s+846.344} G(s)=s2+4.655s+846.344846.344
系统的闭环传递函数为
Φ ( s ) = 846.344 s 2 + 4.655 s + 1692.688 \Phi(s)=\frac{846.344}{s^2+4.655s+1692.688} Φ(s)=s2+4.655s+1692.688846.344
1.系统的相角裕度为
γ = arctan ⁡ 2 ζ 1 + 4 ζ 4 − 2 ζ 2 = 9.148 ° \gamma=\arctan\frac{2\zeta}{\sqrt{\sqrt{1+4\zeta^4}-2\zeta^2}}=9.148° γ=arctan1+4ζ4 2ζ2 2ζ=9.148°
最小相位的二阶系统幅值裕度为 ∞ \infin
2.系统的幅频
A ( ω ) ∣ ω = 31 = 0.5 ( 1 − ω 2 1692.688 ) 2 + 0.0256 1692.688 ω 2 = 1.114 A(\omega)|_{\omega=31}=\frac{0.5}{\sqrt{(1-\cfrac{\omega^2}{1692.688})^2+\cfrac{0.0256}{1692.688}\omega^2}} =1.114 A(ω)ω=31=(11692.688ω2)2+1692.6880.0256ω2 0.5=1.114
系统的相频
φ ( ω ) ∣ ω = 31 = − arctan ⁡ 0.16 41.142 ω 1 − ω 2 1692.688 = − 15.584 ° \varphi(\omega)|_{\omega=31}=-\arctan\frac{\cfrac{0.16}{41.142}\omega}{1-\cfrac{\omega^2}{1692.688}}=-15.584° φ(ω)ω=31=arctan11692.688ω241.1420.16ω=15.584°
系统的稳定输出为
C s s ( t ) = 3.230 sin ⁡ ( 31 t − 15.584 ° ) C_{ss}(t)=3.230\sin(31t-15.584°) Css(t)=3.230sin(31t15.584°)
3.由系统的闭环传递函数可知
ω n 1 = 41.142 , ζ 1 = 0.057 \omega_{n1}=41.142,\quad\zeta_1=0.057 ωn1=41.142,ζ1=0.057
超调量为
σ % = e − π ζ 1 1 − ζ 1 2 × 100 % = 83.693 % \sigma\%=e^{-\cfrac{\pi\zeta_1}{\sqrt{1-\zeta_1^2}}}\times100\%=83.693\% σ%=e1ζ12 πζ1×100%=83.693%
输出瞬间最大值
C ( t p ) = 846.344 1692.688 × 183.693 % × 1.9 = 1.745 C(t_p)=\frac{846.344}{1692.688}\times183.693\%\times1.9=1.745 C(tp)=1692.688846.344×183.693%×1.9=1.745
:也可以计算出 t p t_p tp,再求出时域输出表达式,代入 t p t_p tp求出。
调节时间
t s = 3.5 ζ 1 ω n 1 = 0.376 s t_s=\frac{3.5}{\zeta_1\omega_{n1}}=0.376s ts=ζ1ωn13.5=0.376s

四、

系统的开环传递函数化为
G ( s ) = 2 e − T s s − 1 = − 2 e − T s − s + 1 G(s)=\frac{2e^{-Ts}}{s-1}=-\frac{2e^{-Ts}}{-s+1} G(s)=s12eTs=s+12eTs
1.系统的频率特性
G ( j ω ) = − 2 − j ω + 1 ( cos ⁡ T ω − j sin ⁡ T ω ) = 2 ω 2 + 1 ∠ arctan ⁡ ω − 180 ° − 57.3 ° × T ω \begin{aligned} G(j\omega)&=-\frac{2}{-j\omega+1}(\cos T\omega-j\sin T\omega) \\ &=\frac{2}{\sqrt{\omega^2+1}}\angle \arctan\omega-180°-57.3°\times T\omega \end{aligned} G(jω)=jω+12(cosTωjsinTω)=ω2+1 2arctanω180°57.3°×Tω

f ( ω ) = arctan ⁡ ω − 57.3 ° × T ω f(\omega)=\arctan\omega-57.3°\times T\omega f(ω)=arctanω57.3°×Tω
ω \omega ω求导
f ′ ( ω ) = 1 1 + ω 2 − 57.3 ° 180 ° × π × T = 1 1 + ω 2 − T f'(\omega)=\frac{1}{1+\omega^2}-\frac{57.3°}{180°}\times\pi\times T=\frac{1}{1+\omega^2}-T f(ω)=1+ω21180°57.3°×π×T=1+ω21T
令上式等于零,可得
ω = 1 T − 1 \omega=\sqrt{\frac{1}{T}-1} ω=T11
0 < T ⩽ 1 0<T\leqslant1 0<T1时, 0 < ω ⩽ 1 T − 1 0<\omega\leqslant\sqrt{\cfrac{1}{T}-1} 0<ωT11 f ( ω ) f(\omega) f(ω)单调增, ω ⩾ 1 T − 1 \omega\geqslant\sqrt{\cfrac{1}{T}-1} ωT11 f ( ω ) f(\omega) f(ω)单调减;当 T > 1 T>1 T>1,无解, f ( ω ) f(\omega) f(ω)单调减。
ω → 0 + \omega\rightarrow0^+ ω0+时,起点 G ( j 0 ) = − 2 G(j0)=-2 G(j0)=2 φ ( 0 ) = − 180 ° \varphi(0)=-180° φ(0)=180°;当 ω → + ∞ \omega\rightarrow+\infin ω+时,终点 G ( + j ∞ ) = 0 G(+j\infin)=0 G(+j)=0 φ ( + ∞ ) = − ∞ \varphi(+\infin)=-\infin φ(+)=,奈奎斯特图有两种情况略。
2.由系统的开环传递函数可知,系统在 s s s右半平面有一个极点 s = 2 s=2 s=2,即 P = 1 P=1 P=1;系统截止频率
2 ω c 2 + 1 = 1 \frac{2}{\sqrt{\omega_{c}^2+1}}=1 ωc2+1 2=1
解得
ω c = 3 \omega_{c}=\sqrt3 ωc=3
对应的相角裕度
γ = 180 ° + a r c t a n ω c − 180 ° − 57.3 ° × T ω c = 60 ° − 99.3 ° T \begin{aligned} \gamma&=180°+arctan\omega_c-180°-57.3°\times T\omega_c \\ &=60°-99.3°T \end{aligned} γ=180°+arctanωc180°57.3°×Tωc=60°99.3°T
有上式可知,当 0 < T < 0.604 0<T<0.604 0<T<0.604时,系统的奈奎斯曲线与实轴第二个交点位于 ( − 1 , j 0 ) (-1,j0) (1,j0)点右边, N + = 0.5 N_+=0.5 N+=0.5 N − = 0 N_-=0 N=0,则
Z = P − 2 ( N + − N − ) = 0 Z=P-2(N_+-N_-)=0 Z=P2(N+N)=0
系统稳定。

五、

x ( t ) = e A t x ( 0 ) x(t)=e^{At}x(0) x(t)=eAtx(0),对 x ( t ) x(t) x(t)求导可得
x ˙ ( t ) = A e A t x ( 0 ) = [ e t e t − e − t ] \dot{x}(t)=Ae^{At}x(0)= \begin{bmatrix} e^t \\ e^t-e^{-t} \end{bmatrix} x˙(t)=AeAtx(0)=[etetet]
t = 0 t=0 t=0,可得
x ( 0 ) = [ 1 2 ] , x ˙ ( 0 ) = [ 1 0 ] x(0)= \begin{bmatrix} 1 \\ 2 \end{bmatrix},\quad \dot{x}(0)= \begin{bmatrix} 1 \\ 0 \end{bmatrix} x(0)=[12],x˙(0)=[10]

A = [ a b c d ] A= \begin{bmatrix} a & b \\ c & d \end{bmatrix} A=[acbd]
可得方程组
{ a + 2 b = 1 c + 2 d = 0 \left\{ \begin{aligned} a + 2b & = 1 \\ c + 2d & = 0 \\ \end{aligned} \right. {a+2bc+2d=1=0
x ( t ) x(t) x(t)可知,系统有两个模态 e t e^t et e − t e^{-t} et,对应有两个特征值 λ 1 = 1 \lambda_1=1 λ1=1 λ 2 = − 1 \lambda_2=-1 λ2=1,则 A A A的特征方程为
( λ − a ) ( λ − d ) − b c = λ 2 − ( a + d ) λ + a d − b c = λ 2 − 1 (\lambda-a)(\lambda-d)-bc=\lambda^2-(a+d)\lambda+ad-bc=\lambda^2-1 (λa)(λd)bc=λ2(a+d)λ+adbc=λ21
可得方程组
{ a + d = 0 a d − b c = − 1 \left\{ \begin{aligned} a + d & = 0 \\ ad-bc & = -1 \\ \end{aligned} \right. {a+dadbc=0=1
联立两个方程组可解得
{ a = 1 b = 0 c = 2 d = − 1 \left\{ \begin{aligned} a &= 1 \\ b &= 0 \\ c &= 2 \\ d & = -1 \end{aligned} \right. abcd=1=0=2=1

A = [ 1 0 2 − 1 ] A= \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} A=[1201]
或者对 x ( t ) x(t) x(t)求导后,利用 d o t x ( t ) = A x ( t ) dot{x}(t)=Ax(t) dotx(t)=Ax(t)
[ e t e t − e − t ] = [ a b c d ] [ e t e t + e − t ] \begin{bmatrix} e^t \\ e^t-e^{-t} \end{bmatrix}= \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e^t \\ e^t+e^{-t} \end{bmatrix} [etetet]=[acbd][etet+et]
得到方程组
{ ( a + b ) e t + b e − t = e t ( c + d ) e t + d e − t = e t − e − t \left\{ \begin{array}{cc} (a+b)e^t+be{-t}=e^t \\ (c+d)e^t+de{-t}=e^t-e^{-t} \\ \end{array} \right. {(a+b)et+bet=et(c+d)et+det=etet
解得
A = [ 1 0 2 − 1 ] A= \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} A=[1201]

六、

1.顺时针状态 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3,系统的状态空间方程为
x ˙ = [ − k 0 − k 1 0 0 1 1 1 ] x + [ k 0 0 ] u y = [ 1 1 0 ] x \begin{aligned} \dot{x}&= \begin{bmatrix} -k & 0 & -k \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{bmatrix} x+ \begin{bmatrix} k\\ 0\\ 0\\ \end{bmatrix} u \\ y&= \begin{bmatrix} 1 & 1 & 0 \\ \end{bmatrix} x \end{aligned} x˙y=k11001k01x+k00u=[110]x
2.系统的能控性矩阵
Q c = [ B A B A 2 B ] = [ k − k 2 k 3 − k 2 0 k − k 2 0 k 2 k − k 2 ] Q_c= \begin{bmatrix} B & AB & A^2B \end{bmatrix}= \begin{bmatrix} k & -k^2 & k^3-k^2 \\ 0 & k & -k^2 \\ 0 & k & 2k-k^2 \\ \end{bmatrix} Qc=[BABA2B]=k00k2kkk3k2k22kk2
r a n k Q c = 3 rankQ_c=3 rankQc=3,满秩,系统能控。
3.系统的能观性矩阵
Q o = [ C C A C A 2 ] = [ 1 1 0 1 − k 0 − k k 2 − 2 k − k k 2 − 2 k ] Q_o= \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix}= \begin{bmatrix} 1 & 1 & 0 \\ 1-k & 0 & -k \\ k^2-2k & -k & k^2-2k \\ \end{bmatrix} Qo=CCACA2=11kk22k10k0kk22k
能观性矩阵的行最简形矩阵为
[ 1 1 0 1 − k 0 − k k 2 − 2 k − k k 2 − 2 k ] = [ 1 1 0 0 k − 1 − k 0 k − k 2 k 2 − 2 k ] = [ 1 1 0 0 k − 1 − k 0 0 − 2 k ] \begin{bmatrix} 1 & 1 & 0 \\ 1-k & 0 & -k \\ k^2-2k & -k & k^2-2k \\ \end{bmatrix}= \begin{bmatrix} 1 & 1 & 0 \\ 0 & k-1 & -k \\ 0 & k-k^2 & k^2-2k \\ \end{bmatrix}= \begin{bmatrix} 1 & 1 & 0 \\ 0 & k-1 & -k \\ 0 & 0 & -2k \\ \end{bmatrix} 11kk22k10k0kk22k=1001k1kk20kk22k=1001k100k2k
k ≠ 0 k\not=0 k=0 k ≠ 1 k\not=1 k=1时,能观性矩阵满秩,系统能观。

七、

1.系统的特征值
∣ λ I − A ∣ = ∣ λ + 1 − 1 − 1 0 λ + 1 0 − 3 0 λ − 1 ∣ = ( − 1 ) 1 + 1 ( λ + 1 ) ∣ λ + 1 0 0 λ − 1 ∣ + ( − 1 ) 3 + 1 ( − 3 ) ∣ − 1 − 1 λ + 1 0 ∣ = ( λ + 1 ) 2 ( λ − 1 ) − 3 ( λ + 1 ) = ( λ + 1 ) ( λ 2 − 1 − 3 ) = ( λ + 1 ) ( λ + 2 ) ( λ − 2 ) \begin{aligned} |\lambda I-A|&= \begin{vmatrix} \lambda+1 & -1 & -1 \\ 0 & \lambda+1 & 0 \\ -3 & 0 & \lambda-1 \end{vmatrix} \\ &= (-1)^{1+1}(\lambda+1) \begin{vmatrix} \lambda+1 & 0 \\ 0 & \lambda-1 \end{vmatrix} + (-1)^{3+1}(-3) \begin{vmatrix} -1 & -1 \\ \lambda+1 & 0 \end{vmatrix} \\ &=(\lambda+1)^2(\lambda-1)-3(\lambda+1) \\ &=(\lambda+1)(\lambda^2-1-3) \\ &=(\lambda+1)(\lambda+2)(\lambda-2) \end{aligned} λIA=λ+1031λ+1010λ1=(1)1+1(λ+1)λ+100λ1+(1)3+1(3)1λ+110=(λ+1)2(λ1)3(λ+1)=(λ+1)(λ213)=(λ+1)(λ+2)(λ2)
解得
λ 1 = − 1 , λ 2 = − 2 , λ 3 = 2 \lambda_1=-1,\quad \lambda_2=-2,\quad \lambda_3=2 λ1=1,λ2=2,λ3=2
λ 1 = − 1 \lambda_1=-1 λ1=1的特征向量
( − I − A ) α 1 = [ 0 − 1 − 1 0 0 0 − 3 0 − 2 ] α 1 = 0 → α 1 = [ 1 1.5 − 1.5 ] (-I-A)\alpha_1= \begin{bmatrix} 0 & -1 & -1 \\ 0 & 0 & 0 \\ -3 & 0 & -2 \\ \end{bmatrix} \alpha_1=0 \rightarrow \alpha_1= \begin{bmatrix} 1 \\ 1.5 \\ -1.5 \\ \end{bmatrix} (IA)α1=003100102α1=0α1=11.51.5
λ 2 = − 2 \lambda_2=-2 λ2=2的特征向量
( − 2 I − A ) α 2 = [ − 1 − 1 − 1 0 − 1 0 − 3 0 − 3 ] α 2 = 0 → α 2 = [ 1 0 − 1 ] (-2I-A)\alpha_2= \begin{bmatrix} -1 & -1 & -1 \\ 0 & -1 & 0 \\ -3 & 0 & -3 \\ \end{bmatrix} \alpha_2=0 \rightarrow \alpha_2= \begin{bmatrix} 1 \\ 0 \\ -1 \\ \end{bmatrix} (2IA)α2=103110103α2=0α2=101
λ 3 = 2 \lambda_3=2 λ3=2的特征向量
( 2 I − A ) α 3 = [ 3 − 1 − 1 0 3 0 − 3 0 1 ] α 3 = 0 → α 3 = [ 1 0 3 ] (2I-A)\alpha_3= \begin{bmatrix} 3 & -1 & -1 \\ 0 & 3 & 0 \\ -3 & 0 & 1 \\ \end{bmatrix} \alpha_3=0 \rightarrow \alpha_3= \begin{bmatrix} 1 \\ 0 \\ 3 \\ \end{bmatrix} (2IA)α3=303130101α3=0α3=103
线性变换矩阵为
P = [ 1 1 1 1.5 0 0 − 1.5 − 1 3 ] P= \begin{bmatrix} 1 & 1 & 1 \\ 1.5 & 0 & 0 \\ -1.5 & -1 & 3 \\ \end{bmatrix} P=11.51.5101103
系统的状态转移矩阵
e A t = P [ e − t 0 0 0 e − 2 t 0 0 0 e 2 t ] P − 1 = [ 0.25 e − 2 t + 0.75 e 2 t 0.667 e − t − 0.75 e − 2 t + 0.083 e 2 t − 0.25 e − 2 t + 0.25 e 2 t 0 e − t 0 − 0.75 e − 2 t + 0.75 e 2 t − e − t + 0.75 e − 2 t + 0.25 e 2 t 0.25 e − 2 t + 0.75 e 2 t ] e^{At}=P \begin{bmatrix} e^{-t} & 0 & 0 \\ 0 & e^{-2t} & 0 \\ 0 & 0 & e^{2t} \end{bmatrix} P^{-1}= \begin{bmatrix} 0.25e^{-2t}+0.75e^{2t} & 0.667e^{-t}-0.75e^{-2t}+0.083e^{2t} & -0.25e^{-2t}+0.25e^{2t} \\ 0 & e^{-t} & 0 \\ -0.75e^{-2t}+0.75e^{2t} & -e^{-t}+0.75e^{-2t}+0.25e^{2t} & 0.25e^{-2t}+0.75e^{2t} \end{bmatrix} eAt=Pet000e2t000e2tP1=0.25e2t+0.75e2t00.75e2t+0.75e2t0.667et0.75e2t+0.083e2tetet+0.75e2t+0.25e2t0.25e2t+0.25e2t00.25e2t+0.75e2t
2.线性变换后系统的状态空间方程
x ˉ ˙ = [ A ˉ 11 A ˉ 12 A ˉ 21 A ˉ 22 ] x ˉ + [ B ˉ 1 B ˉ 2 ] u = [ − 1 0 0 0 − 2 0 0 0 2 ] x ˉ + [ 0 1 1 ] u y = [ C ˉ 1 C ˉ 2 ] x ˉ = [ 0 − 1 3 ] x ˉ \begin{aligned} \dot{\bar{x}}&= \begin{bmatrix} \begin{array}{c:c} \bar{A}_{11} & \bar{A}_{12} \\ \hdashline \bar{A}_{21} & \bar{A}_{22} \\ \end{array} \end{bmatrix} \bar{x}+ \begin{bmatrix} \begin{array}{c} \bar{B}_{1} \\ \hdashline \bar{B}_{2} \\ \end{array} \end{bmatrix} u= \begin{bmatrix} \begin{array}{c:cc} -1 & 0 & 0 \\ \hdashline 0 & -2 & 0 \\ 0 & 0 & 2 \\ \end{array} \end{bmatrix} \bar{x}+ \begin{bmatrix} 0 \\ \hdashline 1 \\ 1 \\ \end{bmatrix} u \\ y&= \begin{bmatrix} \begin{array}{c:c} \bar{C}_{1} & \bar{C}_{2} \\ \end{array} \end{bmatrix} \bar{x}= \begin{bmatrix} \begin{array}{c:cc} 0 & -1 & 3 \\ \end{array} \end{bmatrix} \bar{x} \end{aligned} xˉ˙y=[Aˉ11Aˉ21Aˉ12Aˉ22]xˉ+[Bˉ1Bˉ2]u=100020002xˉ+011u=[Cˉ1Cˉ2]xˉ=[013]xˉ
由上式可知分块矩阵 A ˉ 11 \bar{A}_{11} Aˉ11不能控,但有稳定的特征值 λ 1 = − 1 \lambda_1=-1 λ1=1而;分块矩阵 A ˉ 22 \bar{A}_{22} Aˉ22有一个不稳定的特征值 λ 1 = 2 \lambda_1=2 λ1=2和一个稳定的特征值 λ 2 = − 2 \lambda_2=-2 λ2=2,但能控,可以通过状态反馈任意配置极点使系统渐进稳定。设状态反馈后系统的极点均为 s 1 , 2 , 3 = − 1 s_{1,2,3}=-1 s1,2,3=1,系统闭环特征多项式为
Δ ˉ ( s ) = det ⁡ ( s I − A − B K ) = s 3 + ( 1 − 2 k 1 − 2 k 3 ) s 2 − ( 4 + 2 k 1 + 10 k 3 ) s − ( 4 + 8 k 3 ) \begin{aligned} \bar{\Delta}(s)&=\det(sI-A-BK) \\ &=s^3+(1-2k_1-2k_3)s^2-(4+2k_1+10k_3)s-(4+8k_3) \end{aligned} Δˉ(s)=det(sIABK)=s3+(12k12k3)s2(4+2k1+10k3)s(4+8k3)
期望闭环特征多项式为
Δ ∗ ( s ) = s 3 + 3 s 2 + 3 s + 1 \Delta^*(s)=s^3+3s^2+3s+1 Δ(s)=s3+3s2+3s+1
对比两式可得
K = [ − 0.375 0 − 0.625 ] K= \begin{bmatrix} -0.375 & 0 & -0.625 \end{bmatrix} K=[0.37500.625]
3.系统的传递函数为
G ( s ) = C ( s I − A ) − 1 B = 3 ( s + 2 ) ( s − 2 ) G(s)=C(sI-A)^{-1}B=\frac{3}{(s+2)(s-2)} G(s)=C(sIA)1B=(s+2)(s2)3
含有一个不稳定的特征根 s 3 = 2 s_3=2 s3=2,可取 H ( s ) = s + 2 H(s)=s+2 H(s)=s+2,可得到系统的闭环传递函数
Φ ( s ) = 3 s 2 + 3 s + 2 \Phi(s)=\frac{3}{s^2+3s+2} Φ(s)=s2+3s+23
特征根均位于 s s s平面的左半平面,系统 B I B O BIBO BIBO稳定。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值