等倾斜线绘制相轨迹

1.等倾斜线法绘制相轨迹

1.1 等倾斜线法介绍

二阶系统的微分方程总能写成
x ¨ + f ( x , x ˙ ) = 0 \ddot{x}+f(x,\dot{x})=0 x¨+f(x,x˙)=0
式中, f ( x , x ˙ ) f(x,\dot{x}) f(x,x˙) x x x x ˙ \dot{x} x˙的线性函数和非线性函数组成。令
x ¨ = x ˙ d x ˙ d x \ddot{x}=\dot{x}\frac{\mathrm{d}\dot{x}}{\mathrm{d}x} x¨=x˙dxdx˙
可得
d x ˙ d x = − f ( x , x ˙ ) x ˙ \frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=-\frac{f(x,\dot{x})}{\dot{x}} dxdx˙=x˙f(x,x˙)
式中, d x ˙ d x \cfrac{\mathrm{d}\dot{x}}{\mathrm{d}x} dxdx˙表示相轨迹的斜率。相轨迹的斜率为常数,令
d x ˙ d x = α \frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=\alpha dxdx˙=α
将原式改写,得到等倾斜线方程
x ˙ = − f 1 ( x , x ˙ ) α \dot{x}=-\frac{f_1(x,\dot{x})}{\alpha} x˙=αf1(x,x˙)
举个例子,设系统方程为
x ¨ + x ˙ + x = 0 \ddot{x}+\dot{x}+x=0 x¨+x˙+x=0
可写成
x ˙ d x ˙ d x = − x ˙ − x \dot{x}\frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=-\dot{x}-x x˙dxdx˙=x˙x

d x ˙ d x = α \frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=\alpha dxdx˙=α
得到等倾斜线方程
x ˙ = − 1 1 + α x \dot{x}=-\frac{1}{1+\alpha}x x˙=1+α1x
由上式可知,等倾斜线是 x − x ˙ x-\dot{x} xx˙平面过原点(0,0)的一簇直线。当 α = − 2.19 \alpha=-2.19 α=2.19
在这里插入图片描述
等倾斜线为
x ˙ = 0.84 x \dot{x}=0.84x x˙=0.84x
在这里插入图片描述
上图短直线为等倾斜线的相轨迹斜率,角度相对于 x − x ˙ x-\dot{x} xx˙平面。 α \alpha α取不同值,则可以画出完整相轨迹图
在这里插入图片描述由上面例子的微分方程求解可得
x = e 1 2 t ( C 1 sin ⁡ 3 2 t + C 2 cos ⁡ 3 2 t ) x ˙ = − 1 2 e 1 2 t ( C 1 sin ⁡ 3 2 t + C 2 cos ⁡ 3 2 t ) + e 1 2 t ( 3 2 C 1 cos ⁡ 3 2 t − 3 2 C 2 sin ⁡ 3 2 t ) x=e^{\frac{1}{2}t}(C_1\sin\frac{\sqrt{3}}{2}t+C_2\cos\frac{\sqrt{3}}{2}t) \\ \dot{x}=-\frac{1}{2}e^{\frac{1}{2}t}(C_1\sin\frac{\sqrt{3}}{2}t+C_2\cos\frac{\sqrt{3}}{2}t)+e^{\frac{1}{2}t}(\frac{\sqrt{3}}{2}C_1\cos\frac{\sqrt{3}}{2}t-\frac{\sqrt{3}}{2}C_2\sin\frac{\sqrt{3}}{2}t) x=e21t(C1sin23 t+C2cos23 t)x˙=21e21t(C1sin23 t+C2cos23 t)+e21t(23 C1cos23 t23 C2sin23 t)
C 1 = C 2 = 1 C_1=C_2=1 C1=C2=1,初始值 x ( 0 ) = 1 x(0)=1 x(0)=1 x ˙ ( 0 ) = 0 \dot x(0)=0 x˙(0)=0,可画出相轨迹图
在这里插入图片描述

1.2 普通点和奇点

相平面上的任意一点,
α = d x ˙ d x = − f ( x , x ˙ ) x ˙ \alpha=\frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=-\frac{f(x,\dot{x})}{\dot{x}} α=dxdx˙=x˙f(x,x˙)
为一个确定值,该值为相轨迹在该点的切线斜率,且过这一点的相轨迹唯一,这些点为相平面的普通点。而
α = d x ˙ d x = − f ( x , x ˙ ) x ˙ = 0 0 \alpha=\frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=-\frac{f(x,\dot{x})}{\dot{x}}=\frac{0}{0} α=dxdx˙=x˙f(x,x˙)=00
为不是一个确定值,会有多条相轨迹在此相交,这些点为相平面的奇点。系统的状态位于奇点时,系统将保持静止状态,即系统的速度和加速度都为零,故奇点也称为平衡点。

1.3 相轨迹的性质

①奇点在 x x x轴上。由
f ( x , x ˙ ) x ˙ = 0 0 \frac{f(x,\dot{x})}{\dot{x}}=\frac{0}{0} x˙f(x,x˙)=00
奇点一定会满足 x ˙ = 0 \dot{x}=0 x˙=0,奇点一定在 x x x轴上。
②在相平面的上半平面, x ˙ > 0 \dot{x}>0 x˙>0 x x x会随时间而增加,上半平面的相轨迹向右移动,同理下半平面相反。
③相轨迹垂直穿越 x x x轴。在 x x x轴上 x ˙ = 0 \dot{x}=0 x˙=0,所以
d x ˙ d x = − f ( x , x ˙ ) 0 = ± ∞ \frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=-\frac{f(x,\dot{x})}{0}=\pm\infin dxdx˙=0f(x,x˙)=±
相轨迹必垂直穿越 x x x轴。
④当 f ( x , x ˙ ) = f ( x , − x ˙ ) f(x,\dot{x})=f(x,-\dot{x}) f(x,x˙)=f(x,x˙),即 f ( x , x ˙ ) f(x,\dot{x}) f(x,x˙) x ˙ \dot{x} x˙的偶函数,相轨迹关于 x x x轴对称。当 f ( x , x ˙ ) = − f ( − x , x ˙ ) f(x,\dot{x})=-f(-x,\dot{x}) f(x,x˙)=f(x,x˙),即 f ( x , x ˙ ) f(x,\dot{x}) f(x,x˙) x x x的奇函数,相轨迹关于 x ˙ \dot{x} x˙轴对称。当 f ( x , x ˙ ) = − f ( − x , − x ˙ ) f(x,\dot{x})=-f(-x,-\dot{x}) f(x,x˙)=f(x,x˙),相轨迹关于 x x x轴对称。

2.一阶线性系统的相轨迹

2.1 含 x x x

一阶线性系统的微分方程为
T x ˙ + x = K T\dot{x}+x=K Tx˙+x=K
系统的极点分布图 x − x ˙ x-\dot{x} xx˙平面的相轨迹图
在这里插入图片描述

2.2 不含有 x x x

一阶线性系统的微分方程为
x ˙ = K \dot{x}=K x˙=K
在这里插入图片描述

3.二阶线性系统的相轨迹

3.1 含有 x x x

二阶线性系统的微分方程为
x ¨ + 2 ζ ω n x ˙ + ω n 2 x = 0 \ddot{x}+2\zeta\omega_n\dot{x}+\omega_n^2x=0 x¨+2ζωnx˙+ωn2x=0
改写为
α = d x ˙ d x = − 2 ζ ω n x ˙ + ω n 2 x x ˙ \alpha=\frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=-\frac{2\zeta\omega_n\dot{x}+\omega_n^2x}{\dot{x}} α=dxdx˙=x˙2ζωnx˙+ωn2x

d x ˙ d x = 0 0 \frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=\frac{0}{0} dxdx˙=00
可得
x ˙ = 0 , x = 0 \dot{x}=0,\quad x=0 x˙=0,x=0
原点为二阶线性系统的奇点。二阶线性系统的等倾斜线方程为
x ˙ = − ω n 2 α + 2 ζ ω n x \dot{x}=-\frac{\omega_n^2}{\alpha+2\zeta\omega_n}x x˙=α+2ζωnωn2x
二阶线性系统的特征根为
s 1 , 2 = − ζ ω n ± ω n ζ 2 − 1 s_{1,2}=-\zeta\omega_n\pm\omega_n\sqrt{\zeta^2-1} s1,2=ζωn±ωnζ21
相轨迹图
在这里插入图片描述

3.2 不含有 x x x

二阶线性系统的微分方程为
T x ¨ + x ˙ = K T\ddot{x}+\dot{x}=K Tx¨+x˙=K
改写为
α = d x ˙ d x = − K − x ˙ T x ˙ \alpha=\frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=-\frac{K-\dot{x}}{T\dot{x}} α=dxdx˙=Tx˙Kx˙

d x ˙ d x = 0 0 \frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=\frac{0}{0} dxdx˙=00
K = 0 K=0 K=0
x ˙ = 0 \dot{x}=0 x˙=0
奇点为 x x x轴。当 K ≠ 0 K\not=0 K=0时,无奇点。等倾斜线方程为
x ˙ = K T α + 1 \dot{x}=\frac{K}{T\alpha+1} x˙=Tα+1K
相轨迹图
在这里插入图片描述

3.3 不含 x x x x ˙ \dot{x} x˙

二阶线性系统的微分方程为
T x ¨ = K T\ddot{x}=K Tx¨=K
改写为
α = d x ˙ d x = − K T x ˙ \alpha=\frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=-\frac{K}{T\dot{x}} α=dxdx˙=Tx˙K

d x ˙ d x = 0 0 \frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=\frac{0}{0} dxdx˙=00
K ≠ 0 K\not=0 K=0
x ˙ = 0 \dot{x}=0 x˙=0
奇点为 x x x轴。当 K = 0 K=0 K=0时,无奇点。等倾斜线方程为
x ˙ = K T α \dot{x}=\frac{K}{T\alpha} x˙=TαK
相轨迹图
在这里插入图片描述

4.极限环

在绘制非线性系统相平面图时,有些系统的相轨迹会形成一条孤立的封闭曲线,这就是极限环。极限环具有封闭性和孤立性,封闭性是指相轨迹的周期运动,孤立性是指极限时系统的运动状态。极限环与系统的奇点是中心点时相轨迹不同。稳定极限环表示系统的运动是一种稳定的周期的自持振荡;不稳定极限环表示系统不存在自持振荡,受到扰动时,系统状态离开极限环不会返回;半稳定极限环表示等幅振荡是不稳定的运动,受到扰动时系统状态也可能离开极限环不返回。只有稳定的极限环能在相平面上观测到。
在这里插入图片描述

5.实奇点和虚奇点

在含有非线性特性的二阶系统中,非线性特性会把相平面分成若干个区域,每个区域都会有对应的微分方程,若奇点位于对应区域之内,该奇点称为实奇点。位于对应区域之外,相轨迹不会到达该奇点,该奇点称为虚奇点。

6.非线性微分方程线性化

x ¨ = f ( x , x ˙ ) \ddot{x}=f(x,\dot{x}) x¨=f(x,x˙)存在奇点 ( x 0 , x ˙ 0 ) (x_0,\dot{x}_0) (x0,x˙0),判断奇点的类型,可将 f ( x , x ˙ ) f(x,\dot{x}) f(x,x˙)在点处展开泰勒级数,略去高次项,得到奇点附近关于 x x x增量 Δ x \Delta x Δx的线性二阶微分方程
Δ x ¨ + ∂ f ( x , x ˙ ) ∂ x ∣ x ˙ = x ˙ 0 x = x 0 Δ x + ∂ f ( x , x ˙ ) ∂ x ˙ ∣ x ˙ = x ˙ 0 x = x 0 Δ x ˙ = 0 \Delta \ddot{x}+\frac{\partial f(x,\dot{x})}{\partial x}\bigg|_{_{\dot{x}=\dot{x}_0}^{x=x_0}}\Delta x+\frac{\partial f(x,\dot{x})}{\partial \dot{x}}\bigg|_{_{\dot{x}=\dot{x}_0}^{x=x_0}}\Delta \dot{x} =0 Δx¨+xf(x,x˙)x˙=x˙0x=x0Δx+x˙f(x,x˙)x˙=x˙0x=x0Δx˙=0
根据上式解出特征根,运用二阶系统的相轨迹分析判断奇点类型。

7.等倾斜线绘制相轨迹步骤

7.1 给出系统的结构图形式(不一定是下面这种结构)

在这里插入图片描述
(1)分区域写出非线性特性对应的线性数学表达式;
(2)根据系统结构图列写微分方程;
(3)选择对应的坐标系,根据微分方程划分区域,并画出开关线;
(4)求出系统的奇点,根据一阶系统和二阶系统的相轨迹分析判断奇点类型,若系统某个区域的微分方程未线性化,将其线性化后再判断奇点的类型;
(5)判断奇点是实奇点还是虚奇点;
(6)按照题目给出的初始条件,分区域绘制相轨迹,并将相邻区域的相轨迹连接起来,得到整个非线性系统的相轨迹;
(7)根据相轨迹,判断非线性系统的运动特性,是否存在稳定极限环、稳态误差,系统是否稳定等。

7.2 给出非线性微分方程形式

举例说明步骤
x ¨ − M ( 1 − x 2 ) x ˙ + x = 0 \ddot{x}-M(1-x^2)\dot{x}+x=0 x¨M(1x2)x˙+x=0
(1)将微分方程改写成
x ¨ + f ( x , x ˙ ) = 0 \ddot{x}+f(x,\dot{x})=0 x¨+f(x,x˙)=0
(2)令 x ¨ = d x ˙ d x \ddot{x}=\cfrac{\mathrm{d}\dot{x}}{\mathrm{d}x} x¨=dxdx˙,改写微分方程
d x ˙ d x = M ( 1 − x 2 ) x ˙ − x x ˙ \frac{\mathrm{d}\dot{x}}{\mathrm{d}x}=\frac{M(1-x^2)\dot{x}-x}{\dot{x}} dxdx˙=x˙M(1x2)x˙x
(3)令 d x ˙ d x = 0 0 \cfrac{\mathrm{d}\dot{x}}{\mathrm{d}x}=\cfrac{0}{0} dxdx˙=00,得到奇点 ( 0 , 0 ) (0,0) (0,0)
(4)对非线性微分方程线性化,判断奇点类型
Δ x ¨ = ∂ f ( x , x ˙ ) ∂ x ∣ x ˙ = x ˙ 0 x = x 0 Δ x + ∂ f ( x , x ˙ ) ∂ x ˙ ∣ x ˙ = x ˙ 0 x = x 0 Δ x ˙ \Delta \ddot{x}=\frac{\partial f(x,\dot{x})}{\partial x}\bigg|_{_{\dot{x}=\dot{x}_0}^{x=x_0}}\Delta x+\frac{\partial f(x,\dot{x})}{\partial \dot{x}}\bigg|_{_{\dot{x}=\dot{x}_0}^{x=x_0}}\Delta \dot{x} Δx¨=xf(x,x˙)x˙=x˙0x=x0Δx+x˙f(x,x˙)x˙=x˙0x=x0Δx˙
得到线性化微分方程
Δ x ¨ − M Δ x ˙ + Δ x = 0 \Delta \ddot{x}-M\Delta \dot{x}+\Delta x=0 Δx¨MΔx˙+Δx=0
特征根
x 1 , 2 = M ± M 2 − 4 2 x_{1,2}=\frac{M\pm\sqrt{M^2-4}}{2} x1,2=2M±M24
奇点为不稳定焦点或者不稳定节点
(5)令 α = d x ˙ d x \alpha=\cfrac{\mathrm{d}\dot{x}}{\mathrm{d}x} α=dxdx˙,得到等倾斜线方程
x ˙ = − x α − M ( 1 − x 2 ) \dot{x}=-\frac{x}{\alpha-M(1-x^2)} x˙=αM(1x2)x
注意当 α = 0 \alpha=0 α=0时, x = ± 1 x=\pm1 x=±1,会出现分子为零的情况,利用微积分的知识,可知均为连续点。 α \alpha α取不同值,得到不同的等倾斜线方程,绘制出相轨迹。下图是 M = 1 M=1 M=1的相轨迹图
在这里插入图片描述

  • 15
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值