2021广东工业大学810控制原理参考答案

本文探讨了控制系统的设计与分析,包括传递函数、微分方程、根轨迹和频率特性等概念。首先,介绍了系统的闭环传递函数及其在无超调条件下的参数限制,接着讨论了根轨迹方程和系统的稳定性条件。此外,还分析了系统的频率响应,计算了自振频率和幅值裕度。最后,研究了脉冲传递函数和闭环特征方程,展示了如何确定系统稳定性和自激振荡的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、(2021.10.25修改)(2021.12.18修改)

图略
N ( s ) I ( s ) = G 1 ( s ) G 2 ( s ) + G 1 ( s ) G 2 ( s ) G 3 s G 4 ( s ) H 1 ( s ) 1 + G 3 ( s ) G 4 ( s ) H 1 ( s ) + G 1 ( s ) G 2 ( s ) G 3 ( s ) G 4 ( s ) H 2 ( s ) \xcancel{ \cfrac{N(s)}{I(s)}=\frac{G_1(s)G_2(s)+G_1(s)G_2(s)G_3{s}G_4(s)H_1(s)}{1+G_3(s)G_4(s)H_1(s)+G_1(s)G_2(s)G_3(s)G_4(s)H_2(s)} } I(s)N(s)=1+G3(s)G4(s)H1(s)+G1(s)G2(s)G3(s)G4(s)H2(s)G1(s)G2(s)+G1(s)G2(s)G3sG4(s)H1(s)
N ( s ) I ( s ) = G 1 ( s ) G 2 ( s ) + G 1 ( s ) G 2 ( s ) G 3 s G 4 ( s ) H 1 ( s ) 1 + G 1 ( s ) G 4 ( s ) + G 3 ( s ) G 4 ( s ) H 1 ( s ) + G 1 ( s ) G 2 ( s ) G 3 ( s ) G 4 ( s ) H 2 ( s ) \cfrac{N(s)}{I(s)}=\frac{G_1(s)G_2(s)+G_1(s)G_2(s)G_3{s}G_4(s)H_1(s)}{1+G_1(s)G_4(s)+G_3(s)G_4(s)H_1(s)+G_1(s)G_2(s)G_3(s)G_4(s)H_2(s)} I(s)N(s)=1+G1(s)G4(s)+G3(s)G4(s)H1(s)+G1(s)G2(s)G3(s)G4(s)H2(s)G1(s)G2(s)+G1(s)G2(s)G3sG4(s)H1(s)

二、(2021.10.26修改)

列出系统的微分方程
m y ¨ ( t ) = f [ x ˙ 1 ( t ) − y ˙ ( t ) ] + k 1 [ x 1 ( t ) − y ( t ) ] − k 2 [ x 2 ( t ) + y ( t ) ] m\ddot{y}(t)=f[\dot{x}_1(t)-\dot{y}(t)]+k_1[x_1(t)-y(t)]-k_2[x_2(t)+y(t)] my¨(t)=f[x˙1(t)y˙(t)]+k1[x1(t)y(t)]k2[x2(t)+y(t)]
对上式取拉氏变换
( m s 2 + f s + k 1 + k 2 ) Y ( s ) = ( f s + k 1 ) X 1 ( s ) − k 2 X 2 ( s ) (ms^2+fs+k_1+k_2)Y(s)=(fs+k_1)X_1(s)-k_2X_2(s) (ms2+fs+k1+k2)Y(s)=(fs+k1)X1(s)k2X2(s)
X 1 ( t ) = 1 s 2 X_1(t)=\cfrac{1}{s^2} X1(t)=s21 X 2 ( t ) = 1 s 2 X_2(t)=\cfrac{1}{s^2} X2(t)=s21
Y ( s ) = f s + k 1 − k 2 m s 2 + f s + k 1 + k 2 ⋅ 1 s 2 = f s 2 m s 2 + f s + k 1 + k 2 ⋅ 1 s 2 = 3 s ( s + 1 ) ( s + 2 ) = 1.5 s − 3 s + 1 + 1.5 s + 2 \begin{aligned} Y(s)&=\frac{fs+k_1-k_2}{ms^2+fs+k_1+k_2}\cdot\frac{1}{s^2} \\ &=\frac{fs^2}{ms^2+fs+k_1+k_2}\cdot\frac{1}{s^2} \\ &=\frac{3}{s(s+1)(s+2)} \\ &=\frac{1.5}{s}-\frac{3}{s+1}+\frac{1.5}{s+2} \end{aligned} Y(s)=ms2+fs+k1+k2fs+k1k2s21=ms2+fs+k1+k2fs2s21=s(s+1)(s+2)3=s1.5s+13+s+21.5
对上式取拉氏反变换
y ( t ) = 1.5 − 3 e − 1 + 1.5 e − 2 t y(t)=1.5-3e^{-1}+1.5e^{-2t} y(t)=1.53e1+1.5e2t
t = 2 s t=2s t=2s时,中间物块位移 y y y
y ≈ 1.121 m y\approx1.121m y1.121m
:设输入 x 1 x_1 x1对应位移为 y 1 y_1 y1,输入 x 2 x_2 x2对应位移为 y 2 y_2 y2,列写微分方程组
m y ¨ 1 = x 1 − f ( y ˙ 1 − y ˙ ) − k 1 ( y 1 − y ) m y ¨ = f ( y ˙ 1 − y ˙ ) + k 1 ( y 1 − y ) − k 2 ( y − y 2 ) m y ¨ 2 = k 2 ( y − y 2 ) − x 2 m\ddot{y}_1 =x_1-f(\dot{y}_1-\dot{y})-k_1(y_1-y)\\ m\ddot{y}=f(\dot{y}_1-\dot{y})+k_1(y_1-y)-k_2(y-y_2) \\ m\ddot{y}_2=k_2(y-y_2)-x_2 my¨1=x1f(y˙1y˙)k1(y1y)my¨=f(y˙1y˙)+k1(y1y)k2(yy2)my¨2=k2(yy2)x2
拉氏变换后,系统阶数太高,难以计算,这里 x 1 x_1 x1 x 2 x_2 x2对应的是位移。

三、(2021.12.19改)

系统的闭环传递函数为
Φ ( s ) = K 1 s 2 + K 1 K 2 s + K 1 \Phi(s)=\cfrac{K_1}{s^2+K_1K_2s+K_1} Φ(s)=s2+K1K2s+K1K1
(1)
要使系统在单位阶跃响应下无超调,则系统为临界阻尼状态或者过阻尼状态,即 ζ ⩾ 1 \zeta\geqslant1 ζ1,而系统的阻尼比为
ζ = K 1 K 2 2 \zeta=\cfrac{\sqrt{K_1}K_2}{2} ζ=2K1 K2

K 1 ⩾ 4 K 2 2 K_1\geqslant\cfrac{4}{K_2^2} K1K224
(2)
位于系统输入端的误差传递函数为
Φ e ( s ) = 1 − H ( s ) Φ ( s ) = s 2 s 2 + K 1 K 2 s + K 1 \Phi_e(s)=1-H(s)\Phi(s)=\cfrac{s^2}{s^2+K_1K_2s+K_1} Φe(s)=1H(s)Φ(s)=s2+K1K2s+K1s2
在输入为 R ( s ) = 3 s + 2 s 2 R(s)=\cfrac{3}{s}+\cfrac{2}{s^2} R(s)=s3+s22时,系统的输入端误差为
e s s ( ∞ ) = lim ⁡ s → 0 s E ( s ) = lim ⁡ s → 0 s Φ e ( s ) R ( s ) = 0 e_ss(\infin)=\lim_{s\rightarrow0}sE(s)=\lim_{s\rightarrow0}s\Phi_e(s)R(s)=0 ess()=s0limsE(s)=s0limsΦe(s)R(s)=0
或者根据系统的开环传递函数
G ( s ) H ( s ) = K 1 K 2 s + K 1 s 2 G(s)H(s)=\frac{K_1K_2s+K_1}{s^2} G(s)H(s)=s2K1K2s+K1
可知系统为 II \text{II} II型系统,由静态误差系数可知,系统输入端的误差为0。若系统输入端的误差小于 0.5 0.5 0.5 K 1 K_1 K1 K 2 K_2 K2取大于零即可。
位于系统输出端的误差传递函数为
Φ e ′ ( s ) = 1 − Φ ( s ) = s 2 + K 1 K 2 s s 2 + K 1 K 2 s + K 1 \Phi_e^{'}(s)=1-\Phi(s)=\cfrac{s^2+K_1K_2s}{s^2+K_1K_2s+K_1} Φe(s)=1Φ(s)=s2+K1K2s+K1s2+K1K2s
在输入为 R ( s ) = 3 s + 2 s 2 R(s)=\cfrac{3}{s}+\cfrac{2}{s^2} R(s)=s3+s22时,系统的输出端误差为
e s s ′ ( ∞ ) = lim ⁡ s → 0 s E ′ ( s ) = lim ⁡ s → 0 s Φ e ′ ( s ) R ( s ) = 2 K 2 e_{ss}^{'}(\infin)=\lim_{s\rightarrow0}sE^{'}(s)=\lim_{s\rightarrow0}s\Phi_e^{'}(s)R(s)=2K_2 ess()=s0limsE(s)=s0limsΦe(s)R(s)=2K2
若系统输出端的误差小于 0.5 0.5 0.5,则
K 1 > 0 , 0 < K 2 < 0.25 K_1>0,\quad 0<K_2<0.25 K1>0,0<K2<0.25
注: 参考书上定义的稳态误差是输入端的误差,题目的问法偏向于输入端的误差,建议两种都写上。
(3)
K 1 = 25 K_1=25 K1=25 K 2 = 0.32 K_2=0.32 K2=0.32
Φ ( s ) = 25 s 2 + 8 s + 25 \Phi(s)=\cfrac{25}{s^2+8s+25} Φ(s)=s2+8s+2525
阻尼比和自然振荡频率为
ζ = 0.75 , ω n = 5 r a d / s \zeta=0.75,\quad \omega_n=5rad/s ζ=0.75,ωn=5rad/s
超调量
σ % = e − π ζ 1 − ζ 2 × 100 % = 2.838 % \sigma\%=e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\%=2.838\% σ%=e1ζ2 πζ×100%=2.838%
调节时间
t s = 4.4 ζ ω n = 1.1 s t_s=\cfrac{4.4}{\zeta\omega_n}=1.1s ts=ζωn4.4=1.1s

四、

(1)
G 0 ( s ) = 1 G_0(s)=1 G0(s)=1,系统的根轨迹方程为
K ( s + 6 ) s ( s 2 + 6 s + 18 ) = − 1 K\cfrac{(s+6)}{s(s^2+6s+18)}=-1 Ks(s2+6s+18)(s+6)=1
①根轨迹的起点
p 1 = 0 , p 2 , 3 = − 3 ± j 3 p_1=0,\quad p_{2,3}=-3\pm j3 p1=0,p2,3=3±j3
②根轨迹的终点为 z = − 6 z=-6 z=6以及无穷远处

③实轴上的根轨迹: [ − 6 , 0 ] [-6,0] [6,0]

④根轨迹渐近线
0 − 6 + 6 2 = 0 , φ 1 = 90 ° , φ 2 = 270 ° \frac{0-6+6}{2}=0, \quad \varphi_1=90°, \quad \varphi_2=270° 206+6=0,φ1=90°,φ2=270°
⑤根轨迹无分离点和汇合点
⑥根轨迹与虚轴无交点
⑦根轨迹出射角
θ p 1 = 180 ° + 45 ° − 135 ° − 90 ° = 0 ° θ p 2 = 0 ° \theta_{p_1}=180°+45°-135°-90°=0° \\ \theta_{p_2}=0° θp1=180°+45°135°90°=0°θp2=0°
图略
(2)
设极点的实部均为 p p p,根据根之和可得
3 p = − 6 → p = − 2 3p=-6 \rightarrow p=-2 3p=6p=2
p p p代入系统的闭环特征方程
p 3 + 6 p 2 + ( 18 + K ) p + 6 K = 0 p^3+6p^2+(18+K)p+6K=0 p3+6p2+(18+K)p+6K=0
解得
K = 5 K=5 K=5
K ⩾ 5 \sout{K\geqslant5} K5时,系统可降阶。
K ⩾ 5 K\geqslant5 K5时,系统可降阶为一个含有一对共轭复数极点无零点的二阶系统。当 0 < K < 5 0<K<5 0<K<5时,系统可降阶为带零点的一阶系统。
(3)
G 0 ( s ) = s + 4 s + f G_0(s)=\cfrac{s+4}{s+f} G0(s)=s+fs+4时,系统的根轨迹方程为
K ( s + 4 ) ( s + 6 ) s ( s + f ) ( s 2 + 6 s + 18 ) = − 1 K\cfrac{(s+4)(s+6)}{s(s+f)(s^2+6s+18)}=-1 Ks(s+f)(s2+6s+18)(s+4)(s+6)=1
根据相角条件
60 ° + 79.107 ° − 90 ° − 90 ° − 120 ° − arctan ⁡ 3 3 f − 3 = ( 2 l + 1 ) π 60°+79.107°-90°-90°-120°-\arctan\cfrac{3\sqrt3}{f-3}=(2l+1)\pi 60°+79.107°90°90°120°arctanf333 =(2l+1)π
解得
f = 18 f=18 f=18

五、

系统的频率特性
A ( ω ) = K ω ω 2 + 1 4 ω 2 + 1 φ ( ω ) = − 90 ° − arctan ⁡ ω − arctan ⁡ 2 ω A(\omega)=\cfrac{K}{\omega\sqrt{\omega^2+1}\sqrt{4\omega^2+1}} \\ \varphi(\omega)=-90°-\arctan\omega-\arctan2\omega A(ω)=ωω2+1 4ω2+1 Kφ(ω)=90°arctanωarctan2ω
(1)
K = 100 K=100 K=100,输入为 r ( t ) = 3 sin ⁡ 2 t r(t)=3\sin2t r(t)=3sin2t时,输出为
c ( t ) = 3 A ( 2 ) s i n ( 2 t + φ ( 2 ) ) = 16.670 cos ⁡ ( 2 t − 139.400 ° ) c(t)=3A(2)sin(2t+\varphi(2))=16.670\cos(2t-139.400°) c(t)=3A(2)sin(2t+φ(2))=16.670cos(2t139.400°)
(2)
奈奎斯特曲线与实轴交点
G ( j ω ) = − K T 1 T 2 T 1 + T 2 = − 2 3 K G(j\omega)=\cfrac{-KT_1T_2}{T_1+T_2}=-\cfrac{2}{3}K G(jω)=T1+T2KT1T2=32K
图略
(3)
由(2)的奈奎斯特图可知,当奈奎斯特曲线不包围 ( − 1 , j 0 ) (-1,j0) (1,j0)点时,系统稳定,则
0 < K < 1.5 0<K<1.5 0<K<1.5

六、(2021.10.25修改)

(1)
系统的转折频率为
ω 1 = 5 r a d / s , ω 2 = 20 r a d / s \omega_1=5rad/s,\quad\omega_2=20rad/s ω1=5rad/s,ω2=20rad/s
I \text{I} I型系统,低频段斜率为 k = − 20 d B / d e c k=-20dB/dec k=20dB/dec,取特定值 ω 0 = 1 \omega_0=1 ω0=1,由 L a ( 1 ) = 20 lg ⁡ K L_a(1)=20\lg K La(1)=20lgK,低频段过点 ( 1 , 40 d B ) (1,40dB) (1,40dB)。由
100 ω 0.04 ω 2 + 1 0.0025 ω 2 + 1 = 1 \frac{100}{\omega\sqrt{0.04\omega^2+1}\sqrt{0.0025\omega^2+1}}=1 ω0.04ω2+1 0.0025ω2+1 100=1
解得系统的截止频率为 ω c = 18.770 r a d / s \omega_c=18.770rad/s ωc=18.770rad/s,相角裕度为
γ = 180 ° − 90 ° − arctan ⁡ 0.2 ω c − arctan ⁡ 0.05 ω c = − 28.267 ° \gamma=180°-90°-\arctan0.2\omega_c-\arctan0.05\omega_c=-28.267° γ=180°90°arctan0.2ωcarctan0.05ωc=28.267°

− 90 ° − arctan ⁡ 0.2 ω x − arctan ⁡ 0.05 ω x = − 180 ° -90°-\arctan0.2\omega_x-\arctan0.05\omega_x=-180° 90°arctan0.2ωxarctan0.05ωx=180°
解得系统的穿越频率为 ω x = 10 r a d / s \omega_x=10rad/s ωx=10rad/s,幅值裕度为
h = − 20 lg ⁡ ∣ G ( j ω x ) ∣ = − 12.041 d B h=-20\lg|G(j\omega_x)|=-12.041dB h=20lgG(jωx)=12.041dB
相角裕度和幅值裕度均小于零,系统不稳定。
(2)
根据(1)中的相角裕度和幅值裕度,以及题目的要求,可采取串联滞后校正,设校正装置为
G c ( s ) = b T s + 1 T s + 1 G_c(s)=\frac{bTs+1}{Ts+1} Gc(s)=Ts+1bTs+1

γ ′ ′ = γ ( ω c ′ ′ ) + φ c ( ω c ′ ′ ) \gamma^{''}=\gamma(\omega_c^{''})+\varphi_c(\omega_c^{''}) γ=γ(ωc)+φc(ωc)
取校正后 γ ′ ′ = 45 ° \gamma^{''}=45° γ=45° φ c ( ω c ′ ′ ) = − 6 ° \varphi_c(\omega_c^{''})=-6° φc(ωc)=6°,则
γ ( ω c ′ ′ ) = 51 ° \gamma(\omega_c^{''})=51° γ(ωc)=51°

γ ( ω c ′ ′ ) = 180 ° − 90 ° − arctan ⁡ 0.2 ω c ′ ′ − arctan ⁡ 0.05 ω c ′ ′ = 51 ° \gamma(\omega_c^{''})=180°-90°-\arctan0.2\omega_c^{''}-\arctan0.05\omega_c^{''}=51° γ(ωc)=180°90°arctan0.2ωcarctan0.05ωc=51°
解得
ω c ′ ′ = 2.956 r a d / s \omega_c^{''}=2.956rad/s ωc=2.956rad/s
根据
20 lg ⁡ b + L ′ ( ω c ′ ′ ) = 0 1 b T = 0.1 ω c ′ ′ 20\lg b+L^{'}(\omega_c^{''})=0 \\ \cfrac{1}{bT}=0.1\omega_c^{''} 20lgb+L(ωc)=0bT1=0.1ωc
解得
b = 0.0347 , T = 97.456 b=0.0347,\quad T=97.456 b=0.0347,T=97.456
校正装置的传递函数为
G c ( s ) = 3.382 s + 1 97.456 s + 1 G_c(s)=\frac{3.382s+1}{97.456s+1} Gc(s)=97.456s+13.382s+1

− 90 ° − arctan ⁡ 0.2 ω x − arctan ⁡ 0.05 ω x − arctan ⁡ 97.456 ω x + arctan ⁡ 3.382 ω x = − 180 ° -90°-\arctan0.2\omega_x-\arctan0.05\omega_x-\arctan97.456\omega_x+\arctan3.382\omega_x=-180° 90°arctan0.2ωxarctan0.05ωxarctan97.456ωx+arctan3.382ωx=180°
解得
ω x = 9.636 r a d / s \omega_x=9.636rad/s ωx=9.636rad/s
校正后的幅值裕度为
h = − 20 lg ⁡ ∣ G ( j ω x ) ∣ = 16.507 d B h=-20\lg|G(j\omega_x)|=16.507dB h=20lgG(jωx)=16.507dB

φ c ( ω c ′ ′ ) ≈ arctan ⁡ [ 0.1 ( b − 1 ) ] = − 5.514 ° \varphi_c(\omega_c^{''}) \approx\arctan[0.1(b-1)]=-5.514° φc(ωc)arctan[0.1(b1)]=5.514°
可求得 γ ′ ′ = 45.486 ° \gamma^{''}=45.486° γ=45.486°,满足题目要求。

七、(2021.12.21修改)

(1)
负倒描述函数为
− 1 N ( A ) = − A + j b -\frac{1}{N(A)}=-A+jb N(A)1=A+jb
由上式可知,负倒描述函数曲线为一条虚部恒定、实部单调减的直线。线性部分为振荡环节,当 ω → 0 + \omega\rightarrow0^+ ω0+时, A ( ω ) = 1 A(\omega)=1 A(ω)=1 φ ( ω ) = 0 ° \varphi(\omega)=0° φ(ω)=0°,当 ω → ∞ \omega\rightarrow\infin ω时, A ( ω ) = 0 A(\omega)=0 A(ω)=0 φ ( ω ) = − 180 ° \varphi(\omega)=-180° φ(ω)=180°,由 A ( ω n ) = 1 2 ζ A(\omega_n)=\cfrac{1}{2\zeta} A(ωn)=2ζ1可知,与虚轴交点为 − j -j j,图略。
0 < b ⩽ − 1 0<b\leqslant-1 0<b1时,负倒描述函数与奈奎斯特曲线有交点。当 ω \omega ω增大时,负倒描述函数有不稳定区域过度到稳定区域,系统发生自激振荡。
(2)
由(1)可知,当 b = − 0.5 b=-0.5 b=0.5时,系统发生自激振荡,负倒描述函数区域与奈奎斯特曲线
交点的虚部为 − 0.5 -0.5 0.5,由
G ( j ω ) = 1 − 0.25 ω 2 ( 1 − 0.25 ω 2 ) 2 + 0.25 ω 2 − j 0.5 ω ( 1 − 0.25 ω 2 ) 2 + 0.25 ω 2 G(j\omega)=\frac{1-0.25\omega^2}{(1-0.25\omega^2)^2+0.25\omega^2}-j\frac{0.5\omega}{(1-0.25\omega^2)^2+0.25\omega^2} G(jω)=(10.25ω2)2+0.25ω210.25ω2j(10.25ω2)2+0.25ω20.5ω
令上式虚部为 − 0.5 -0.5 0.5,则
ω 4 − 4 ω 2 − 16 ω + 16 = 0 \omega^4-4\omega^2-16\omega+16=0 ω44ω216ω+16=0
解得
ω 1 = 2.773 , ω 2 = 0.852 \omega_1=2.773,\quad\omega_2=0.852 ω1=2.773,ω2=0.852
代入原式实部
Re [ G ( j ω 1 ) ] = − 0.333 , Re [ G ( j ω 2 ) ] = − 0.961 Re [ G ( j ω 2 ) ] = 0.961 ( 舍 去 ) \text{Re}[G(j\omega_1)]=-0.333,\quad \xcancel{\text{Re}[G(j\omega_2)]=-0.961}\quad \text{Re}[G(j\omega_2)]=0.961(舍去) Re[G(jω1)]=0.333,Re[G(jω2)]=0.961 Re[G(jω2)]=0.961()
因此自振频率为 ω = 2.773 r a d / s \omega=2.773rad/s ω=2.773rad/s,幅值为 A = 0.333 A=0.333 A=0.333。当 A = 0.5 A=0.5 A=0.5时,奈奎斯特曲线不包围负倒描述函数曲线,系统稳定。

八、

(1)
系统的开环脉冲传递函数
G ( z ) = ( 1 − z − 1 ) ⋅ Z [ 1 + 1 s ] ⋅ Z [ 1 s ( s + 1 ) ] = ( z − 1 z ) ⋅ ( 2 z − 1 z − 1 ) ⋅ ( 0.632 z ( z − 1 ) ( z − 0.368 ) ) = 0.632 ( 2 z − 1 ) ( z − 1 ) ( z − 0.368 ) \begin{aligned} G(z)&=(1-z^{-1})\cdot\mathscr{Z}[1+\frac{1}{s}]\cdot\mathscr{Z}[\frac{1}{s(s+1)}] \\ &=(\frac{z-1}{z})\cdot(\frac{2z-1}{z-1})\cdot(\frac{0.632z}{(z-1)(z-0.368)}) \\ &=\frac{0.632(2z-1)}{(z-1)(z-0.368)} \end{aligned} G(z)=(1z1)Z[1+s1]Z[s(s+1)1]=(zz1)(z12z1)((z1)(z0.368)0.632z)=(z1)(z0.368)0.632(2z1)
(2)
系统的闭环特征方程为
Δ ( z ) = z 3 − 0.104 z 2 − 0.264 z = 0 \Delta(z)=z^3-0.104z^2-0.264z=0 Δ(z)=z30.104z20.264z=0
解得
z 1 = 0.568 , z 2 = − 0.464 z_1=0.568,\quad z_2=-0.464 z1=0.568,z2=0.464
∣ z i ∣ < 1 |z_i|<1 zi<1,系统稳定,由系统的开环脉冲传递函数可知,当 r ( t ) = 2 t r(t)=2t r(t)=2t
e s s ( ∞ ) = lim ⁡ z → 1 ( z − 1 ) G ( z ) = 1 \xcancel{ e_{ss}(\infin)=\lim_{z\rightarrow1}(z-1)G(z)=1 } ess()=z1lim(z1)G(z)=1
e s s ( ∞ ) = lim ⁡ z → 1 ( z − 1 ) G ( z ) = 2 e_{ss}(\infin)=\lim_{z\rightarrow1}(z-1)G(z)=2 ess()=z1lim(z1)G(z)=2

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值