一、(2021.10.25修改)(2021.12.18修改)
图略
N
(
s
)
I
(
s
)
=
G
1
(
s
)
G
2
(
s
)
+
G
1
(
s
)
G
2
(
s
)
G
3
s
G
4
(
s
)
H
1
(
s
)
1
+
G
3
(
s
)
G
4
(
s
)
H
1
(
s
)
+
G
1
(
s
)
G
2
(
s
)
G
3
(
s
)
G
4
(
s
)
H
2
(
s
)
\xcancel{ \cfrac{N(s)}{I(s)}=\frac{G_1(s)G_2(s)+G_1(s)G_2(s)G_3{s}G_4(s)H_1(s)}{1+G_3(s)G_4(s)H_1(s)+G_1(s)G_2(s)G_3(s)G_4(s)H_2(s)} }
I(s)N(s)=1+G3(s)G4(s)H1(s)+G1(s)G2(s)G3(s)G4(s)H2(s)G1(s)G2(s)+G1(s)G2(s)G3sG4(s)H1(s)
N
(
s
)
I
(
s
)
=
G
1
(
s
)
G
2
(
s
)
+
G
1
(
s
)
G
2
(
s
)
G
3
s
G
4
(
s
)
H
1
(
s
)
1
+
G
1
(
s
)
G
4
(
s
)
+
G
3
(
s
)
G
4
(
s
)
H
1
(
s
)
+
G
1
(
s
)
G
2
(
s
)
G
3
(
s
)
G
4
(
s
)
H
2
(
s
)
\cfrac{N(s)}{I(s)}=\frac{G_1(s)G_2(s)+G_1(s)G_2(s)G_3{s}G_4(s)H_1(s)}{1+G_1(s)G_4(s)+G_3(s)G_4(s)H_1(s)+G_1(s)G_2(s)G_3(s)G_4(s)H_2(s)}
I(s)N(s)=1+G1(s)G4(s)+G3(s)G4(s)H1(s)+G1(s)G2(s)G3(s)G4(s)H2(s)G1(s)G2(s)+G1(s)G2(s)G3sG4(s)H1(s)
二、(2021.10.26修改)
列出系统的微分方程
m
y
¨
(
t
)
=
f
[
x
˙
1
(
t
)
−
y
˙
(
t
)
]
+
k
1
[
x
1
(
t
)
−
y
(
t
)
]
−
k
2
[
x
2
(
t
)
+
y
(
t
)
]
m\ddot{y}(t)=f[\dot{x}_1(t)-\dot{y}(t)]+k_1[x_1(t)-y(t)]-k_2[x_2(t)+y(t)]
my¨(t)=f[x˙1(t)−y˙(t)]+k1[x1(t)−y(t)]−k2[x2(t)+y(t)]
对上式取拉氏变换
(
m
s
2
+
f
s
+
k
1
+
k
2
)
Y
(
s
)
=
(
f
s
+
k
1
)
X
1
(
s
)
−
k
2
X
2
(
s
)
(ms^2+fs+k_1+k_2)Y(s)=(fs+k_1)X_1(s)-k_2X_2(s)
(ms2+fs+k1+k2)Y(s)=(fs+k1)X1(s)−k2X2(s)
当
X
1
(
t
)
=
1
s
2
X_1(t)=\cfrac{1}{s^2}
X1(t)=s21,
X
2
(
t
)
=
1
s
2
X_2(t)=\cfrac{1}{s^2}
X2(t)=s21时
Y
(
s
)
=
f
s
+
k
1
−
k
2
m
s
2
+
f
s
+
k
1
+
k
2
⋅
1
s
2
=
f
s
2
m
s
2
+
f
s
+
k
1
+
k
2
⋅
1
s
2
=
3
s
(
s
+
1
)
(
s
+
2
)
=
1.5
s
−
3
s
+
1
+
1.5
s
+
2
\begin{aligned} Y(s)&=\frac{fs+k_1-k_2}{ms^2+fs+k_1+k_2}\cdot\frac{1}{s^2} \\ &=\frac{fs^2}{ms^2+fs+k_1+k_2}\cdot\frac{1}{s^2} \\ &=\frac{3}{s(s+1)(s+2)} \\ &=\frac{1.5}{s}-\frac{3}{s+1}+\frac{1.5}{s+2} \end{aligned}
Y(s)=ms2+fs+k1+k2fs+k1−k2⋅s21=ms2+fs+k1+k2fs2⋅s21=s(s+1)(s+2)3=s1.5−s+13+s+21.5
对上式取拉氏反变换
y
(
t
)
=
1.5
−
3
e
−
1
+
1.5
e
−
2
t
y(t)=1.5-3e^{-1}+1.5e^{-2t}
y(t)=1.5−3e−1+1.5e−2t
当
t
=
2
s
t=2s
t=2s时,中间物块位移
y
y
y为
y
≈
1.121
m
y\approx1.121m
y≈1.121m
注:设输入
x
1
x_1
x1对应位移为
y
1
y_1
y1,输入
x
2
x_2
x2对应位移为
y
2
y_2
y2,列写微分方程组
m
y
¨
1
=
x
1
−
f
(
y
˙
1
−
y
˙
)
−
k
1
(
y
1
−
y
)
m
y
¨
=
f
(
y
˙
1
−
y
˙
)
+
k
1
(
y
1
−
y
)
−
k
2
(
y
−
y
2
)
m
y
¨
2
=
k
2
(
y
−
y
2
)
−
x
2
m\ddot{y}_1 =x_1-f(\dot{y}_1-\dot{y})-k_1(y_1-y)\\ m\ddot{y}=f(\dot{y}_1-\dot{y})+k_1(y_1-y)-k_2(y-y_2) \\ m\ddot{y}_2=k_2(y-y_2)-x_2
my¨1=x1−f(y˙1−y˙)−k1(y1−y)my¨=f(y˙1−y˙)+k1(y1−y)−k2(y−y2)my¨2=k2(y−y2)−x2
拉氏变换后,系统阶数太高,难以计算,这里
x
1
x_1
x1和
x
2
x_2
x2对应的是位移。
三、(2021.12.19改)
系统的闭环传递函数为
Φ
(
s
)
=
K
1
s
2
+
K
1
K
2
s
+
K
1
\Phi(s)=\cfrac{K_1}{s^2+K_1K_2s+K_1}
Φ(s)=s2+K1K2s+K1K1
(1)
要使系统在单位阶跃响应下无超调,则系统为临界阻尼状态或者过阻尼状态,即
ζ
⩾
1
\zeta\geqslant1
ζ⩾1,而系统的阻尼比为
ζ
=
K
1
K
2
2
\zeta=\cfrac{\sqrt{K_1}K_2}{2}
ζ=2K1K2
则
K
1
⩾
4
K
2
2
K_1\geqslant\cfrac{4}{K_2^2}
K1⩾K224
(2)
位于系统输入端的误差传递函数为
Φ
e
(
s
)
=
1
−
H
(
s
)
Φ
(
s
)
=
s
2
s
2
+
K
1
K
2
s
+
K
1
\Phi_e(s)=1-H(s)\Phi(s)=\cfrac{s^2}{s^2+K_1K_2s+K_1}
Φe(s)=1−H(s)Φ(s)=s2+K1K2s+K1s2
在输入为
R
(
s
)
=
3
s
+
2
s
2
R(s)=\cfrac{3}{s}+\cfrac{2}{s^2}
R(s)=s3+s22时,系统的输入端误差为
e
s
s
(
∞
)
=
lim
s
→
0
s
E
(
s
)
=
lim
s
→
0
s
Φ
e
(
s
)
R
(
s
)
=
0
e_ss(\infin)=\lim_{s\rightarrow0}sE(s)=\lim_{s\rightarrow0}s\Phi_e(s)R(s)=0
ess(∞)=s→0limsE(s)=s→0limsΦe(s)R(s)=0
或者根据系统的开环传递函数
G
(
s
)
H
(
s
)
=
K
1
K
2
s
+
K
1
s
2
G(s)H(s)=\frac{K_1K_2s+K_1}{s^2}
G(s)H(s)=s2K1K2s+K1
可知系统为
II
\text{II}
II型系统,由静态误差系数可知,系统输入端的误差为0。若系统输入端的误差小于
0.5
0.5
0.5,
K
1
K_1
K1和
K
2
K_2
K2取大于零即可。
位于系统输出端的误差传递函数为
Φ
e
′
(
s
)
=
1
−
Φ
(
s
)
=
s
2
+
K
1
K
2
s
s
2
+
K
1
K
2
s
+
K
1
\Phi_e^{'}(s)=1-\Phi(s)=\cfrac{s^2+K_1K_2s}{s^2+K_1K_2s+K_1}
Φe′(s)=1−Φ(s)=s2+K1K2s+K1s2+K1K2s
在输入为
R
(
s
)
=
3
s
+
2
s
2
R(s)=\cfrac{3}{s}+\cfrac{2}{s^2}
R(s)=s3+s22时,系统的输出端误差为
e
s
s
′
(
∞
)
=
lim
s
→
0
s
E
′
(
s
)
=
lim
s
→
0
s
Φ
e
′
(
s
)
R
(
s
)
=
2
K
2
e_{ss}^{'}(\infin)=\lim_{s\rightarrow0}sE^{'}(s)=\lim_{s\rightarrow0}s\Phi_e^{'}(s)R(s)=2K_2
ess′(∞)=s→0limsE′(s)=s→0limsΦe′(s)R(s)=2K2
若系统输出端的误差小于
0.5
0.5
0.5,则
K
1
>
0
,
0
<
K
2
<
0.25
K_1>0,\quad 0<K_2<0.25
K1>0,0<K2<0.25
注: 参考书上定义的稳态误差是输入端的误差,题目的问法偏向于输入端的误差,建议两种都写上。
(3)
当
K
1
=
25
K_1=25
K1=25,
K
2
=
0.32
K_2=0.32
K2=0.32时
Φ
(
s
)
=
25
s
2
+
8
s
+
25
\Phi(s)=\cfrac{25}{s^2+8s+25}
Φ(s)=s2+8s+2525
阻尼比和自然振荡频率为
ζ
=
0.75
,
ω
n
=
5
r
a
d
/
s
\zeta=0.75,\quad \omega_n=5rad/s
ζ=0.75,ωn=5rad/s
超调量
σ
%
=
e
−
π
ζ
1
−
ζ
2
×
100
%
=
2.838
%
\sigma\%=e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\%=2.838\%
σ%=e−1−ζ2πζ×100%=2.838%
调节时间
t
s
=
4.4
ζ
ω
n
=
1.1
s
t_s=\cfrac{4.4}{\zeta\omega_n}=1.1s
ts=ζωn4.4=1.1s
四、
(1)
当
G
0
(
s
)
=
1
G_0(s)=1
G0(s)=1,系统的根轨迹方程为
K
(
s
+
6
)
s
(
s
2
+
6
s
+
18
)
=
−
1
K\cfrac{(s+6)}{s(s^2+6s+18)}=-1
Ks(s2+6s+18)(s+6)=−1
①根轨迹的起点
p
1
=
0
,
p
2
,
3
=
−
3
±
j
3
p_1=0,\quad p_{2,3}=-3\pm j3
p1=0,p2,3=−3±j3
②根轨迹的终点为
z
=
−
6
z=-6
z=−6以及无穷远处
③实轴上的根轨迹: [ − 6 , 0 ] [-6,0] [−6,0]
④根轨迹渐近线
0
−
6
+
6
2
=
0
,
φ
1
=
90
°
,
φ
2
=
270
°
\frac{0-6+6}{2}=0, \quad \varphi_1=90°, \quad \varphi_2=270°
20−6+6=0,φ1=90°,φ2=270°
⑤根轨迹无分离点和汇合点
⑥根轨迹与虚轴无交点
⑦根轨迹出射角
θ
p
1
=
180
°
+
45
°
−
135
°
−
90
°
=
0
°
θ
p
2
=
0
°
\theta_{p_1}=180°+45°-135°-90°=0° \\ \theta_{p_2}=0°
θp1=180°+45°−135°−90°=0°θp2=0°
图略
(2)
设极点的实部均为
p
p
p,根据根之和可得
3
p
=
−
6
→
p
=
−
2
3p=-6 \rightarrow p=-2
3p=−6→p=−2
将
p
p
p代入系统的闭环特征方程
p
3
+
6
p
2
+
(
18
+
K
)
p
+
6
K
=
0
p^3+6p^2+(18+K)p+6K=0
p3+6p2+(18+K)p+6K=0
解得
K
=
5
K=5
K=5
当
K
⩾
5
\sout{K\geqslant5}
K⩾5时,系统可降阶。
当
K
⩾
5
K\geqslant5
K⩾5时,系统可降阶为一个含有一对共轭复数极点无零点的二阶系统。当
0
<
K
<
5
0<K<5
0<K<5时,系统可降阶为带零点的一阶系统。
(3)
当
G
0
(
s
)
=
s
+
4
s
+
f
G_0(s)=\cfrac{s+4}{s+f}
G0(s)=s+fs+4时,系统的根轨迹方程为
K
(
s
+
4
)
(
s
+
6
)
s
(
s
+
f
)
(
s
2
+
6
s
+
18
)
=
−
1
K\cfrac{(s+4)(s+6)}{s(s+f)(s^2+6s+18)}=-1
Ks(s+f)(s2+6s+18)(s+4)(s+6)=−1
根据相角条件
60
°
+
79.107
°
−
90
°
−
90
°
−
120
°
−
arctan
3
3
f
−
3
=
(
2
l
+
1
)
π
60°+79.107°-90°-90°-120°-\arctan\cfrac{3\sqrt3}{f-3}=(2l+1)\pi
60°+79.107°−90°−90°−120°−arctanf−333=(2l+1)π
解得
f
=
18
f=18
f=18
五、
系统的频率特性
A
(
ω
)
=
K
ω
ω
2
+
1
4
ω
2
+
1
φ
(
ω
)
=
−
90
°
−
arctan
ω
−
arctan
2
ω
A(\omega)=\cfrac{K}{\omega\sqrt{\omega^2+1}\sqrt{4\omega^2+1}} \\ \varphi(\omega)=-90°-\arctan\omega-\arctan2\omega
A(ω)=ωω2+14ω2+1Kφ(ω)=−90°−arctanω−arctan2ω
(1)
当
K
=
100
K=100
K=100,输入为
r
(
t
)
=
3
sin
2
t
r(t)=3\sin2t
r(t)=3sin2t时,输出为
c
(
t
)
=
3
A
(
2
)
s
i
n
(
2
t
+
φ
(
2
)
)
=
16.670
cos
(
2
t
−
139.400
°
)
c(t)=3A(2)sin(2t+\varphi(2))=16.670\cos(2t-139.400°)
c(t)=3A(2)sin(2t+φ(2))=16.670cos(2t−139.400°)
(2)
奈奎斯特曲线与实轴交点
G
(
j
ω
)
=
−
K
T
1
T
2
T
1
+
T
2
=
−
2
3
K
G(j\omega)=\cfrac{-KT_1T_2}{T_1+T_2}=-\cfrac{2}{3}K
G(jω)=T1+T2−KT1T2=−32K
图略
(3)
由(2)的奈奎斯特图可知,当奈奎斯特曲线不包围
(
−
1
,
j
0
)
(-1,j0)
(−1,j0)点时,系统稳定,则
0
<
K
<
1.5
0<K<1.5
0<K<1.5
六、(2021.10.25修改)
(1)
系统的转折频率为
ω
1
=
5
r
a
d
/
s
,
ω
2
=
20
r
a
d
/
s
\omega_1=5rad/s,\quad\omega_2=20rad/s
ω1=5rad/s,ω2=20rad/s
I
\text{I}
I型系统,低频段斜率为
k
=
−
20
d
B
/
d
e
c
k=-20dB/dec
k=−20dB/dec,取特定值
ω
0
=
1
\omega_0=1
ω0=1,由
L
a
(
1
)
=
20
lg
K
L_a(1)=20\lg K
La(1)=20lgK,低频段过点
(
1
,
40
d
B
)
(1,40dB)
(1,40dB)。由
100
ω
0.04
ω
2
+
1
0.0025
ω
2
+
1
=
1
\frac{100}{\omega\sqrt{0.04\omega^2+1}\sqrt{0.0025\omega^2+1}}=1
ω0.04ω2+10.0025ω2+1100=1
解得系统的截止频率为
ω
c
=
18.770
r
a
d
/
s
\omega_c=18.770rad/s
ωc=18.770rad/s,相角裕度为
γ
=
180
°
−
90
°
−
arctan
0.2
ω
c
−
arctan
0.05
ω
c
=
−
28.267
°
\gamma=180°-90°-\arctan0.2\omega_c-\arctan0.05\omega_c=-28.267°
γ=180°−90°−arctan0.2ωc−arctan0.05ωc=−28.267°
由
−
90
°
−
arctan
0.2
ω
x
−
arctan
0.05
ω
x
=
−
180
°
-90°-\arctan0.2\omega_x-\arctan0.05\omega_x=-180°
−90°−arctan0.2ωx−arctan0.05ωx=−180°
解得系统的穿越频率为
ω
x
=
10
r
a
d
/
s
\omega_x=10rad/s
ωx=10rad/s,幅值裕度为
h
=
−
20
lg
∣
G
(
j
ω
x
)
∣
=
−
12.041
d
B
h=-20\lg|G(j\omega_x)|=-12.041dB
h=−20lg∣G(jωx)∣=−12.041dB
相角裕度和幅值裕度均小于零,系统不稳定。
(2)
根据(1)中的相角裕度和幅值裕度,以及题目的要求,可采取串联滞后校正,设校正装置为
G
c
(
s
)
=
b
T
s
+
1
T
s
+
1
G_c(s)=\frac{bTs+1}{Ts+1}
Gc(s)=Ts+1bTs+1
由
γ
′
′
=
γ
(
ω
c
′
′
)
+
φ
c
(
ω
c
′
′
)
\gamma^{''}=\gamma(\omega_c^{''})+\varphi_c(\omega_c^{''})
γ′′=γ(ωc′′)+φc(ωc′′)
取校正后
γ
′
′
=
45
°
\gamma^{''}=45°
γ′′=45°,
φ
c
(
ω
c
′
′
)
=
−
6
°
\varphi_c(\omega_c^{''})=-6°
φc(ωc′′)=−6°,则
γ
(
ω
c
′
′
)
=
51
°
\gamma(\omega_c^{''})=51°
γ(ωc′′)=51°
由
γ
(
ω
c
′
′
)
=
180
°
−
90
°
−
arctan
0.2
ω
c
′
′
−
arctan
0.05
ω
c
′
′
=
51
°
\gamma(\omega_c^{''})=180°-90°-\arctan0.2\omega_c^{''}-\arctan0.05\omega_c^{''}=51°
γ(ωc′′)=180°−90°−arctan0.2ωc′′−arctan0.05ωc′′=51°
解得
ω
c
′
′
=
2.956
r
a
d
/
s
\omega_c^{''}=2.956rad/s
ωc′′=2.956rad/s
根据
20
lg
b
+
L
′
(
ω
c
′
′
)
=
0
1
b
T
=
0.1
ω
c
′
′
20\lg b+L^{'}(\omega_c^{''})=0 \\ \cfrac{1}{bT}=0.1\omega_c^{''}
20lgb+L′(ωc′′)=0bT1=0.1ωc′′
解得
b
=
0.0347
,
T
=
97.456
b=0.0347,\quad T=97.456
b=0.0347,T=97.456
校正装置的传递函数为
G
c
(
s
)
=
3.382
s
+
1
97.456
s
+
1
G_c(s)=\frac{3.382s+1}{97.456s+1}
Gc(s)=97.456s+13.382s+1
由
−
90
°
−
arctan
0.2
ω
x
−
arctan
0.05
ω
x
−
arctan
97.456
ω
x
+
arctan
3.382
ω
x
=
−
180
°
-90°-\arctan0.2\omega_x-\arctan0.05\omega_x-\arctan97.456\omega_x+\arctan3.382\omega_x=-180°
−90°−arctan0.2ωx−arctan0.05ωx−arctan97.456ωx+arctan3.382ωx=−180°
解得
ω
x
=
9.636
r
a
d
/
s
\omega_x=9.636rad/s
ωx=9.636rad/s
校正后的幅值裕度为
h
=
−
20
lg
∣
G
(
j
ω
x
)
∣
=
16.507
d
B
h=-20\lg|G(j\omega_x)|=16.507dB
h=−20lg∣G(jωx)∣=16.507dB
由
φ
c
(
ω
c
′
′
)
≈
arctan
[
0.1
(
b
−
1
)
]
=
−
5.514
°
\varphi_c(\omega_c^{''}) \approx\arctan[0.1(b-1)]=-5.514°
φc(ωc′′)≈arctan[0.1(b−1)]=−5.514°
可求得
γ
′
′
=
45.486
°
\gamma^{''}=45.486°
γ′′=45.486°,满足题目要求。
七、(2021.12.21修改)
(1)
负倒描述函数为
−
1
N
(
A
)
=
−
A
+
j
b
-\frac{1}{N(A)}=-A+jb
−N(A)1=−A+jb
由上式可知,负倒描述函数曲线为一条虚部恒定、实部单调减的直线。线性部分为振荡环节,当
ω
→
0
+
\omega\rightarrow0^+
ω→0+时,
A
(
ω
)
=
1
A(\omega)=1
A(ω)=1,
φ
(
ω
)
=
0
°
\varphi(\omega)=0°
φ(ω)=0°,当
ω
→
∞
\omega\rightarrow\infin
ω→∞时,
A
(
ω
)
=
0
A(\omega)=0
A(ω)=0,
φ
(
ω
)
=
−
180
°
\varphi(\omega)=-180°
φ(ω)=−180°,由
A
(
ω
n
)
=
1
2
ζ
A(\omega_n)=\cfrac{1}{2\zeta}
A(ωn)=2ζ1可知,与虚轴交点为
−
j
-j
−j,图略。
当
0
<
b
⩽
−
1
0<b\leqslant-1
0<b⩽−1时,负倒描述函数与奈奎斯特曲线有交点。当
ω
\omega
ω增大时,负倒描述函数有不稳定区域过度到稳定区域,系统发生自激振荡。
(2)
由(1)可知,当
b
=
−
0.5
b=-0.5
b=−0.5时,系统发生自激振荡,负倒描述函数区域与奈奎斯特曲线
交点的虚部为
−
0.5
-0.5
−0.5,由
G
(
j
ω
)
=
1
−
0.25
ω
2
(
1
−
0.25
ω
2
)
2
+
0.25
ω
2
−
j
0.5
ω
(
1
−
0.25
ω
2
)
2
+
0.25
ω
2
G(j\omega)=\frac{1-0.25\omega^2}{(1-0.25\omega^2)^2+0.25\omega^2}-j\frac{0.5\omega}{(1-0.25\omega^2)^2+0.25\omega^2}
G(jω)=(1−0.25ω2)2+0.25ω21−0.25ω2−j(1−0.25ω2)2+0.25ω20.5ω
令上式虚部为
−
0.5
-0.5
−0.5,则
ω
4
−
4
ω
2
−
16
ω
+
16
=
0
\omega^4-4\omega^2-16\omega+16=0
ω4−4ω2−16ω+16=0
解得
ω
1
=
2.773
,
ω
2
=
0.852
\omega_1=2.773,\quad\omega_2=0.852
ω1=2.773,ω2=0.852
代入原式实部
Re
[
G
(
j
ω
1
)
]
=
−
0.333
,
Re
[
G
(
j
ω
2
)
]
=
−
0.961
Re
[
G
(
j
ω
2
)
]
=
0.961
(
舍
去
)
\text{Re}[G(j\omega_1)]=-0.333,\quad \xcancel{\text{Re}[G(j\omega_2)]=-0.961}\quad \text{Re}[G(j\omega_2)]=0.961(舍去)
Re[G(jω1)]=−0.333,Re[G(jω2)]=−0.961
Re[G(jω2)]=0.961(舍去)
因此自振频率为
ω
=
2.773
r
a
d
/
s
\omega=2.773rad/s
ω=2.773rad/s,幅值为
A
=
0.333
A=0.333
A=0.333。当
A
=
0.5
A=0.5
A=0.5时,奈奎斯特曲线不包围负倒描述函数曲线,系统稳定。
八、
(1)
系统的开环脉冲传递函数
G
(
z
)
=
(
1
−
z
−
1
)
⋅
Z
[
1
+
1
s
]
⋅
Z
[
1
s
(
s
+
1
)
]
=
(
z
−
1
z
)
⋅
(
2
z
−
1
z
−
1
)
⋅
(
0.632
z
(
z
−
1
)
(
z
−
0.368
)
)
=
0.632
(
2
z
−
1
)
(
z
−
1
)
(
z
−
0.368
)
\begin{aligned} G(z)&=(1-z^{-1})\cdot\mathscr{Z}[1+\frac{1}{s}]\cdot\mathscr{Z}[\frac{1}{s(s+1)}] \\ &=(\frac{z-1}{z})\cdot(\frac{2z-1}{z-1})\cdot(\frac{0.632z}{(z-1)(z-0.368)}) \\ &=\frac{0.632(2z-1)}{(z-1)(z-0.368)} \end{aligned}
G(z)=(1−z−1)⋅Z[1+s1]⋅Z[s(s+1)1]=(zz−1)⋅(z−12z−1)⋅((z−1)(z−0.368)0.632z)=(z−1)(z−0.368)0.632(2z−1)
(2)
系统的闭环特征方程为
Δ
(
z
)
=
z
3
−
0.104
z
2
−
0.264
z
=
0
\Delta(z)=z^3-0.104z^2-0.264z=0
Δ(z)=z3−0.104z2−0.264z=0
解得
z
1
=
0.568
,
z
2
=
−
0.464
z_1=0.568,\quad z_2=-0.464
z1=0.568,z2=−0.464
∣
z
i
∣
<
1
|z_i|<1
∣zi∣<1,系统稳定,由系统的开环脉冲传递函数可知,当
r
(
t
)
=
2
t
r(t)=2t
r(t)=2t时
e
s
s
(
∞
)
=
lim
z
→
1
(
z
−
1
)
G
(
z
)
=
1
\xcancel{ e_{ss}(\infin)=\lim_{z\rightarrow1}(z-1)G(z)=1 }
ess(∞)=z→1lim(z−1)G(z)=1
e
s
s
(
∞
)
=
lim
z
→
1
(
z
−
1
)
G
(
z
)
=
2
e_{ss}(\infin)=\lim_{z\rightarrow1}(z-1)G(z)=2
ess(∞)=z→1lim(z−1)G(z)=2