AI换脸原理(4)——人脸对齐(关键点检测)参考文献2DFAN:How far are we from solving the 2D

本文探讨了深度学习在2D和3D人脸对齐任务上的进展,构建了一个强大的基线网络,并在大规模数据集上训练。通过创建新的3D地标数据集LS3D-W,研究了网络在2D和3D对齐的性能,结果显示网络已接近数据集的饱和性能。此外,研究了影响对齐的因素,如姿态、初始化和网络大小,表明网络在各种条件下表现出高精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

本文研究了在现有的2D和3D人脸对齐数据集上,深度神经网络距离接近饱和性能还有多远。为此,我们做出了以下5项贡献:

  • (a)我们首次通过将最先进的地标定位架构与最先进的残差块相结合,构建了一个非常强大的基线,在一个非常大但综合扩展的2D面部地标数据集上训练它,最后在所有其他2D面部地标数据集上对其进行评估。
  • (b)我们创建了一个2D地标网络,该网络将2D地标注释转换为3D并统一所有现有数据集,从而创建了LS3D-W,这是迄今为止最大和最具挑战性的3D面部地标数据集(约23万张图像)。
  • ©接下来,我们训练了一个用于三维人脸对齐的神经网络,并在新引入的LS3D-W上对其进行了评估。
  • (d)我们进一步研究了影响人脸对齐性能的所有“传统”因素,如大姿态、初始化和分辨率的影响,并引入了一个“新”因素,即网络的大小。
  • (e)我们表明,2D和3D人脸对齐网络都达到了非常高的精度,这可能接近于使用的数据集饱和。训练和测试代码以及数据集可以从https: //www.adrianbulat.com/face-alignment/下载

1、介绍

  • 随着深度学习的出现和大型注释数据集的发展,最近的工作已经显示出前所未有的准确性,即使在最具挑战性的计算机视觉任务上也是如此。在这项工作中&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CtrlZ1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值