目录
摘要
本文研究了在现有的2D和3D人脸对齐数据集上,深度神经网络距离接近饱和性能还有多远。为此,我们做出了以下5项贡献:
- (a)我们首次通过将最先进的地标定位架构与最先进的残差块相结合,构建了一个非常强大的基线,在一个非常大但综合扩展的2D面部地标数据集上训练它,最后在所有其他2D面部地标数据集上对其进行评估。
- (b)我们创建了一个2D地标网络,该网络将2D地标注释转换为3D并统一所有现有数据集,从而创建了LS3D-W,这是迄今为止最大和最具挑战性的3D面部地标数据集(约23万张图像)。
- ©接下来,我们训练了一个用于三维人脸对齐的神经网络,并在新引入的LS3D-W上对其进行了评估。
- (d)我们进一步研究了影响人脸对齐性能的所有“传统”因素,如大姿态、初始化和分辨率的影响,并引入了一个“新”因素,即网络的大小。
- (e)我们表明,2D和3D人脸对齐网络都达到了非常高的精度,这可能接近于使用的数据集饱和。训练和测试代码以及数据集可以从https: //www.adrianbulat.com/face-alignment/下载
1、介绍
- 随着深度学习的出现和大型注释数据集的发展,最近的工作已经显示出前所未有的准确性,即使在最具挑战性的计算机视觉任务上也是如此。在这项工作中&#x