深度学习与计算机视觉三

监督学习,非监督学习,半监督学习和强化学习
监督学习的意思是用来训练网络的数据,我们已经知道其对应的输出,这个输出可以是一个类别标签,也可以是一个或者多个值,模型经过训练之后,遇到新的数据,可以预测对应的标签,已知标签的分类和回归问题都属于监督学习。非监督学习并不知道数据的变迁,而是根据数据本身的特征,从数据中根据某种度量学习出一些特征。
在这里插入图片描述
在这两种情况之下,还有比较常见的就是部分数据有标签,部分没有,把这两种数据都利用起来,称之为半监督学习,最后在大数据的趋势之下,越来越流行的一个概念叫做弱监督学习,就是用弱一些的标注来帮助训练一个更强条件下的算法。

强化学习

他是一个比较另类的分支,他的思想借鉴了很多动物和环境交互学习的行为,在这个学习本身就有一个状态,算法借助一个代理和环境的交互,交互的结果以奖惩的形式返回并作用于算法本身。
在这里插入图片描述
因为强化学习的行为都会对应一个奖惩,所以经常有人拿强化学习和监督学习进行比较,但是这两种类型的算法是有很大不同的。首先强化学习的目标就和监督学习的不一样,强化学习看中的是行为序列下的长期受益,而监督学习关注的是和标签或者已知输出的误差,强化学习是没有正确或者错误之分的,而监督学习标签是正确的。

深度卷积神经网络

1.参数共享
同变性的来源是卷积的另一种性质,也就是参数共享,意思就是卷积核在任何一个位置都是不变的,所以在卷积核所在的区域,所有像素和卷积核对应位置相乘求和的过程中,相当于就是和同一套权重相乘。
2.稀疏连接
变换矩阵是一个快循环矩阵,这种矩阵的一个性质就是稀疏性,除非卷积核和图像差不多大,否则这种矩阵中绝大多数元素都为0,这种稀疏性也是卷积神经网络相比一般神经网络的一个巨大优点。
3.多通道卷积
现在每一张图都称为一个通道,通道是一个非常基础的概念,比如彩色图像是红色,绿色,和蓝色分布代表了一副彩色图像中宏红,绿和蓝三种成分的值。
4.激活函数
他是和全连接层没有大的区别,就是给卷积结果做一个非线性变换,也就是直接把得到的特征相应图取了绝对值,这个操作就是一种非线性变换了,可以看做是一种激活函数。
5.池化,不变性和感受野
池化就是卷积神经网络和普通网络最不同的地方,这个概念本身并不是一个具体的操作,而是代表着一种对统计信息的提取,从自字面上看就是把东西放到一起的意思。在深度学习中,最常见的两种池化就是最大值池化和平均值池化。
在这里插入图片描述
池化层最直接的作用就是引入了不变性,比如最常用的最大值池化,就是取一片区域的最大值,所以这个最大值在该区域无论在哪,最大值池化之后都是他。
6.分布式表征
他不是卷积神经网络特有的性质,而是最重要的性质之一,这是一种多对多的描述关系,所以叫分布式。这种形式,恰好和神经网络是一样的,比如全连接网络,每层的输入都会对所有输出产生影响,而每个输出也会受到所有输入的影响,有着强大的表达能力。
7.分层表达
他主要的意思就是每一层(仿射变换和非线性变换),都把样本重新在一个新的空间内表示,这个表示可以再经过一层在另一个新的空间内表示,如果把每层中的一个维度都看作是分布式表征中的一个维度,就相当于数据再一层一层的传播中,都在不同层面的分布式特征下得到重新表示。

卷积神经网络结构

在分层的思想之下,把卷积层和池化层结构在一起,就是最常见的神经网络结构,但那个只是一个示意图,实际的卷积神经网络,微博会有这么分明的特征分层,但大致上特征的复杂程度也是一层一层变得更复杂,且特征构成都是基于前一层的。
以下就是介绍一些基本的结构。

1.LeNet——第一个卷积神经网络
他是卷积神经网路的鼻祖,在各大深度学习框架总自带的用作DEMO目的的LeNet结构,是简化改进版的LeNet-5,和原始的LeNet-5有一些微小的差别。
2.AlexNet——新起点
他是正对ILSVRC的分类问题,输入的图片是256256的三通道彩色图片,为了增强泛化能力,训练的时候Alex采用的数据增加手段中包含随机位置裁剪,具体就是在256256的图片中,随机产生位置裁剪一块224*224的子区域。他还有一个特殊的地方就是卷积的时候采用分组的方法。
3.局部响应归一化——LRN
局部响应归一化就是在某一层得到多通道的响应图之后,对响应图上某一位置和临近通道的值按照公式做归一化。
4.更深的网络——GoogLeNet
GoogLeNet把层数推进到了22层并接近人类在ImageNet数据上的识别水平,也是因为GoogLeNet跳出了AlexNet的基本结构,创新地提出了构建网络的单元Inception模块。
4.1Inception结构
他的基本思想是源于前面提到过的NIN,把激活和卷积看做是一种广义线性模型,从这个角度来看,可以用广义线性模型抽取特征,也就是用更有效的结构来代替单纯的卷积和激活操作。
4.2批归一化——Batch Normalization
他就是对每一批数据进行归一化
5.更深的网络——ResNet
他解决训练网络的另一个角度的问题,退化问题,这个问题就是随着层数加深到一定程度之后,越深的网络反而效果越差,并且不是因为更深的网络造成了过拟合,也未必是因为梯度传播的衰减。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值